Publications

Export 375 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Salama, M., A. E. Hassanien, and Adel Alimi, "Formal concept analysis approach for comparison between mutagenicity and carcinogenicity in Cheminformatics. ", 13th IEEE International Conference on Hybrid Intelligent Systems |(HIS13) Tunisia, 4-6 Dec. pp. 268-273, 2013, Tunisia, , 4-6 Dec, 2013.
Alshabrawy, O. S., A. E. Hassanien, W. A. Awad, and A. A. Salama, 2013 13th International Conference on Hybrid Intelligent Systems (HIS), , 2013. Abstract

n/a

M.Moftah, H., A. T. Azar, E. T. Al-Shammari, N. I.Ghali, A. E. Hassanien, and M. Shoman, "Adaptive K-Means Clustering Algorithm for MR Breast Image Segmentation", Neural Computing and Applications (Springer), 2013. Abstract

Image segmentation is vital for meaningful analysis and interpretation
of medical images. The most popular method for clustering is k-means
clustering. This article presents a new approach intended to provide more reliable
Magnetic Resonance (MR) breast image segmentation that is based on
adaptation to identify target objects through an optimization methodology
that maintains the optimum result during iterations. The proposed approach
improves and enhances the effectiveness and efficiency of the traditional kmeans
clustering algorithm. The performance of the presented approach was
evaluated using various tests and different MR breast images. The experimental
results demonstrate that the overall accuracy provided by the proposed
adaptive k-means approach is superior to the standard k-means clustering
technique.

Soliman, M. M., A. E. Hassanien, and H. M. Onsi, "A Blind Roubst Watermarking Scheme based on Progresive Mesh and Self Organization Maps", International conference on Advances in Security of Information and Communication Networks, (SecNet 2013) , Egypt, Springer , pp. 3-5 Sept, 2013, 2013. blind_compressed_wm.pdf
Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning", Memetic Computing Springer , 2013. AbstractWebsite

The selection of the optimal ensembles of classifiers in multiple-classifier selection technique is un-decidable in many cases and it is potentially subjected to a trial-and-error search. This paper introduces a quantitative meta-learning approach based on neural network and rough set theory in the selection of the best predictive model. This approach depends directly on the characteristic, meta-features of the input data sets. The employed meta-features are the degree of discreteness and the distribution of the features in the input data set, the fuzziness of these features related to the target class labels and finally the correlation and covariance between the different features. The experimental work that consider these criteria are applied on twenty nine data sets using different classification techniques including support vector machine, decision tables and Bayesian believe model. The measures of these criteria and the best result classification technique are used to build a meta data set. The role of the neural network is to perform a black-box prediction of the optimal, best fitting, classification technique. The role of the rough set theory is the generation of the decision rules that controls this prediction approach. Finally, formal concept analysis is applied for the visualization of the generated rules.

Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning.", Memetic Computing- Springer, vol. 5, issue 3, pp. 165-177, 2013. Website
Xia, K., J. Li, H. G. Shuangjiu Xiao, F. Fang, and A. E. Hassanien, "Fuzzy Clustering with Multi-resolution Bilateral Filtering for Medical Image Segmentation", International Journal of Fuzzy System Applications (IJFSA), vol. 3, issue 4, 2013. fuzzy_clustering_with_multi-resolution_bilateral_filtering_for_medical_image_segmentation-revision.pdf
Soliman, O. S., Jan Platoš, A. E. Hassanien, and Václav Snášel, "Automatic localization and boundary detection of retina in images using basic image processing filters", Proceedings of the Third International Conference on Intelligent Human Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011: Springer Berlin Heidelberg, pp. 169–182, 2013. Abstract
n/a
Soliman, O. S., Jan Platoš, A. E. Hassanien, and Václav Snášel, "Automatic localization and boundary detection of retina in images using basic image processing filters", Proceedings of the Third International Conference on Intelligent Human Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011: Springer Berlin Heidelberg, pp. 169–182, 2013. Abstract
n/a
Soliman, O. S., Jan Platoš, A. E. Hassanien, and Václav Snášel, "Automatic localization and boundary detection of retina in images using basic image processing filters", Proceedings of the Third International Conference on Intelligent Human Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011: Springer Berlin Heidelberg, pp. 169–182, 2013. Abstract
n/a
Anter, A. M., A. E. Hassanien, and G. Schaefer, "Automatic Segmentation and Classification of Liver Abnormalities Using Fractal Dimension", Pattern Recognition (ACPR), 2013 2nd IAPR Asian Conference on: IEEE, pp. 937–941, 2013. Abstract
n/a
Soliman, M. M., A. E. Hassanien, and H. M. Onsi, "A Blind 3D Watermarking Approach for 3D Mesh Using Clustering Based Methods", International Journal of Computer Vision and Image Processing (IJCVIP), vol. 3, no. 2: IGI Global, pp. 43–53, 2013. Abstract
n/a
Soliman, M. M., A. E. Hassanien, and H. M. Onsi, "A Blind 3D Watermarking Approach for 3D Mesh Using Clustering Based Methods", International Journal of Computer Vision and Image Processing (IJCVIP), vol. 3, no. 2: IGI Global, pp. 43–53, 2013. Abstract
n/a
Soliman, M. M., A. E. Hassanien, and H. M. Onsi, "A Blind Robust 3D-Watermarking Scheme Based on Progressive Mesh and Self Organization Maps", Advances in Security of Information and Communication Networks: Springer Berlin Heidelberg, pp. 131–142, 2013. Abstract
n/a
Alshabrawy, O. S., A. E. Hassanien, W. A. Awad, and A. A. Salama, "Blind separation of underdetermined mixtures with additive white and pink noises", Hybrid Intelligent Systems (HIS), 2013 13th International Conference on: IEEE, pp. 305–311, 2013. Abstract
n/a
Mouhamed, M. R., H. M. Zawbaa, E. T. Al-Shammari, A. E. Hassanien, and V. Snasel, "Blind watermark approach for map authentication using support vector machine", Advances in security of information and communication networks: Springer Berlin Heidelberg, pp. 84–97, 2013. Abstract
n/a
Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning", Memetic Computing, vol. 5, no. 3: Springer Berlin Heidelberg, pp. 165–177, 2013. Abstract
n/a
Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning", Memetic Computing, vol. 5, no. 3: Springer Berlin Heidelberg, pp. 165–177, 2013. Abstract
n/a
Eid, H. F., M. A. Salama, and A. E. Hassanien, "A Feature Selection Approach for Network Intrusion Classification: The Bi-Layer Behavioral-Based", International Journal of Computer Vision and Image Processing (IJCVIP), vol. 3, no. 4: IGI Global, pp. 51–59, 2013. Abstract
n/a
Salama, M. A., A. E. Hassanien, and A. M. Alimi, "Formal concept analysis approach for comparison between Mutagenicity and Carcinogenicity in Cheminformatics", Hybrid Intelligent Systems (HIS), 2013 13th International Conference on: IEEE, pp. 267–272, 2013. Abstract
n/a
Aziz, A. S. A., A. T. Azar, M. A. Salama, A. E. Hassanien, and S. E. - O. Hanafy, "Genetic algorithm with different feature selection techniques for anomaly detectors generation", Computer Science and Information Systems (FedCSIS), 2013 Federated Conference on: IEEE, pp. 769–774, 2013. Abstract
n/a
Hossam Moftah, Walaa Elmasry, M. Ibrahim, A. E. Hassanien, and G. Schaefer, "Mammary Gland Tumor Detection in Cats Using Ant Colony Optimisation", Pattern Recognition (ACPR), 2013 2nd IAPR Asian Conference on: IEEE, pp. 942–945, 2013. Abstract
n/a
Soliman, M. M., A. E. Hassanien, and H. M. Onsi, "Robust watermarking approach for 3D triangular mesh using self organization map", Computer Engineering & Systems (ICCES), 2013 8th International Conference on: IEEE, pp. 99–104, 2013. Abstract
n/a
Salama, M. A., O. S. Soliman, I. Maglogiannis, A. E. Hassanien, and A. A. Fahmy, "Rough set-based identification of heart valve diseases using heart sounds", Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam: Springer Berlin Heidelberg, pp. 475–491, 2013. Abstract
n/a
Salama, M. A., O. S. Soliman, I. Maglogiannis, A. E. Hassanien, and A. A. Fahmy, "Rough set-based identification of heart valve diseases using heart sounds", Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam: Springer Berlin Heidelberg, pp. 475–491, 2013. Abstract
n/a