Employment of neural network and rough set in meta-learning.

Salama, M. A., A. E. Hassanien, and K. Revett, "Employment of neural network and rough set in meta-learning.", Memetic Computing- Springer, vol. 5, issue 3, pp. 165-177, 2013.

Related External Link

The selection of the optimal ensembles of classifiers in multiple-classifier selection technique is un-decidable in many cases and it is potentially subjected to a trial-and-error search. This paper introduces a quantitative meta-learning approach based on neural network and rough set theory in the selection of the best predictive model. This approach depends directly on the characteristic, meta-features of the input data sets. The employed meta-features are the degree of discreteness and the distribution of the features in the input data set, the fuzziness of these features related to the target class labels and finally the correlation and covariance between the different features. The experimental work that consider these criteria are applied on twenty nine data sets using different classification techniques including support vector machine, decision tables and Bayesian believe model. The measures of these criteria and the best result classification technique are used to build a meta data set. The role of the neural network is to perform a black-box prediction of the optimal, best fitting, classification technique. The role of the rough set theory is the generation of the decision rules that controls this prediction approach. Finally, formal concept analysis is applied for the visualization of the generated rules.