abd elaziz, M., A. A. Ewees, and A. E. Hassanien, "Whale Optimization Algorithm and Moth-Flame Optimization for Multilevel Thresholding Image Segmentation", Expert Systems with Applications, 2017. AbstractWebsite

Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu’s fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers.

Ismael, G., A. E. H. and, and A. Taher, "Feature selection via a novel chaotic crow search algorithm,", Neural Computing and Applications , 2017. AbstractWebsite

Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh in 2016. The main inspiration of CSA came from crow search mechanism for hiding their food. Like most of the optimization algorithms, CSA suffers from low convergence rate and entrapment in local optima. In this paper, a novel meta-heuristic optimizer, namely chaotic crow search algorithm (CCSA), is proposed to overcome these problems. The proposed CCSA is applied to optimize feature selection problem for 20 benchmark datasets. Ten chaotic maps are employed during the optimization process of CSA. The performance of CCSA is compared with other well-known and recent optimization algorithms. Experimental results reveal the capability of CCSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. Moreover, the results show that CCSA is superior compared to CSA and the other algorithms. In addition, the experiments show that sine chaotic map is the appropriate map to significantly boost the performance of CSA.

Hassanin, M. F., A. M. Shoeb, and A. E. Hassanien, "Designing Multilayer Feedforward Neural Networks Using Multi-Verse Optimizer", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Artificial neural network (ANN) models are involved in many applications because of its great computational capabilities. Training of multi-layer perceptron (MLP) is the most challenging problem during the network preparation. Many techniques have been introduced to alleviate this problem. Back-propagation algorithm is a powerful technique to train multilayer feedforward ANN. However, it suffers from the local minima drawback. Recently, meta-heuristic methods have introduced to train MLP like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), Ant Colony Optimizer (ACO), Social Spider Optimization (SSO), Evolutionary Strategy (ES) and Grey Wolf Optimization (GWO). This chapter applied Multi-Verse Optimizer (MVO) for MLP training. Seven datasets are used to show MVO capabilities as a promising trainer for multilayer perceptron. Comparisons with PSO, GA, SSO, ES, ACO and GWO proved that MVO outperforms all these algorithms.

Ahmed, K., and A. E. Hassanien, "An Efficient Approach for Community Detection in Complex Social Networks Based on Elephant Swarm Optimization Algorithm", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Complex social networks analysis is an important research trend, which basically based on community detection. Community detection is the process of dividing the complex social network into a dynamic number of clusters based on their edges connectivity. This paper presents an efficient Elephant Swarm Optimization Algorithm for community detection problem (EESO) as an optimization approach. EESO can define dynamically the number of communities within complex social network. Experimental results are proved that EESO can handle the community detection problem and define the structure of complex networks with high accuracy and quality measures of NMI and modularity over four popular benchmarks such as Zachary Karate Club, Bottlenose Dolphin, American college football and Facebook. EESO presents high promised results against eight community detection algorithms such as discrete krill herd algorithm, discrete Bat algorithm, artificial fish swarm algorithm, fast greedy, label propagation, walktrap, Multilevel and InfoMap.

Elhoseny, M., A. Farouk, A. Shehab, and A. E. Hassanien, "Secure Image Processing and Transmission Schema in Cluster-Based Wireless Sensor Network", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure image processing schemas designed for image transmission over a network, the limited resources and the dynamic environment make it invisible to be used with Wireless Sensor Networks (WSNs). In addition, the current secure data transmission schemas in WSN are concentrated on the text data and are not applicable for image transmission's applications. Furthermore, secure image transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. The reason why is because the limited resources of the sensor nodes which are usually deployed in unattended environments. This chapter introduces a secure image processing and transmission schema in WSN using Elliptic Curve Cryptography (ECC) and Homomorphic Encryption (HE).

Farouk, A., M. Elhoseny, and A. E. Hassanien, "A Proposed Architecture for Key Management Schema in Centralized Quantum Network", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Most existing realizations of quantum key distribution (QKD) are point-to-point systems with one source transferring to only one destination. Growth of these single-receiver systems has now achieved a reasonably sophisticated point. However, many communication systems operate in a point-to-multi-point (Multicast) configuration rather than in point-to-point mode, so it is crucial to demonstrate compatibility with this type of network in order to maximize the application range for QKD. Therefore, this chapter proposed architecture for implementing a multicast quantum key distribution Schema. The proposed architecture is designed as a Multicast Centralized Key Management Scheme Using Quantum Key Distribution and Classical Symmetric Encryption. In this architecture, a secured key generation and distribution solution has been proposed for a single host sending to two or more (N) receivers using centralized Quantum Multicast Key Distribution Centre and classical symmetric encryption.

Oliva, D., and A. E. Hassanien, "Digital Images Segmentation Using a Physical-Inspired Algorithm", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Segmentation is one of the most important tasks in image processing. It classifies the pixels into two or more groups depending on their intensity levels and a threshold value. The classical methods exhaustively search the best thresholds for a spec image. This process requires a high computational effort, to avoid this situation has been incremented the use of evolutionary algorithms. The Electro-magnetism-Like algorithm (EMO) is an evolutionary method which mimics the attraction-repulsion mechanism among charges to evolve the members of a population. Different to other algorithms, EMO exhibits interesting search capabilities whereas maintains a low computational overhead. This chapter introduces a multilevel thresholding (MT) algorithm based on the EMO and the Otsu's method as objective function. The combination of those techniques generates a multilevel segmentation algorithm which can effectively identify the threshold values of a digital image reducing the number of iterations.

Osman, M. A., A. Darwish, A. Z. Ghalwash, and A. E. Hassanien, "Enhanced Breast Cancer Diagnosis System Using Fuzzy Clustering Means Approach in Digital Mammography", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Breast cancer or malignant breast neoplasm is the most common type of cancer in women. Researchers are not sure of the exact cause of breast cancer. If the cancer can be detected early, the options of treatment and the chances of total recovery will increase. Computer Aided Diagnostic (CAD) systems can help the researchers and specialists in detecting the abnormalities early. The main goal of computerized breast cancer detection in digital mammography is to identify the presence of abnormalities such as mass lesions and Micro calcification Clusters (MCCs). Early detection and diagnosis of breast cancer represent the key for breast cancer control and can increase the success of treatment. This chapter investigates a new CAD system for the diagnosis process of benign and malignant breast tumors from digital mammography. X-ray mammograms are considered the most effective and reliable method in early detection of breast cancer. In this chapter, the breast tumor is segmented from medical image using Fuzzy Clustering Means (FCM) and the features for mammogram images are extracted. The results of this work showed that these features are used to train the classifier to classify tumors. The effectiveness and performance of this work is examined using classification accuracy, sensitivity and specificity and the practical part of the proposed system distinguishes tumors with high accuracy.

Osman, M. A., A. Darwish, A. Z. Ghalwash, and A. E. Hassanien, "Enhanced Breast Cancer Diagnosis System Using Fuzzy Clustering Means Approach in Digital Mammography", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

Breast cancer or malignant breast neoplasm is the most common type of cancer in women. Researchers are not sure of the exact cause of breast cancer. If the cancer can be detected early, the options of treatment and the chances of total recovery will increase. Computer Aided Diagnostic (CAD) systems can help the researchers and specialists in detecting the abnormalities early. The main goal of computerized breast cancer detection in digital mammography is to identify the presence of abnormalities such as mass lesions and Micro calcification Clusters (MCCs). Early detection and diagnosis of breast cancer represent the key for breast cancer control and can increase the success of treatment. This chapter investigates a new CAD system for the diagnosis process of benign and malignant breast tumors from digital mammography. X-ray mammograms are considered the most effective and reliable method in early detection of breast cancer. In this chapter, the breast tumor is segmented from medical image using Fuzzy Clustering Means (FCM) and the features for mammogram images are extracted. The results of this work showed that these features are used to train the classifier to classify tumors. The effectiveness and performance of this work is examined using classification accuracy, sensitivity and specificity and the practical part of the proposed system distinguishes tumors with high accuracy.

Sara Ahmed, T. Gaber, and A. E. Hassanien, "Telemetry Data Mining Techniques, Applications, and Challenges", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017. Abstract

The most recent rise of telemetry is around the use of Radio-telemetry technology for tracking the traces of moving objects. Initially, the radio telemetry was first used in the 1960s for studying the behavior and ecology of wild animals. Nowadays, there's a wide spectrum application of can benefits from radio telemetry technology with tracking methods, such as path discovery, location prediction, movement behavior analysis, and so on. Accordingly, rapid advance of telemetry tracking system boosts the generation of large-scale trajectory data of tracking traces of moving objects. In this study, we survey various applications of trajectory data mining and review an extensive collection of existing trajectory data mining techniques to be used as a guideline for designing future trajectory data mining solutions.