Treebank
Al-Emran, M., S. Zaza, and K. Shaalan,
"Parsing Modern Standard Arabic using Treebank Resources",
The International Conference on Information and Communication Technology Research (ICTRC), UAE, 18 May, 2015.
AbstractA Treebank is a linguistic resource that is composed of a large collection of manually annotated and verified syntactically analyzed sentences. Statistical Natural Language Processing (NLP) approaches have been successful in using these annotations for developing basic NLP tasks such as tokenization, diacritization, part-of-speech tagging, parsing, among others. In this paper, we address the problem of exploiting treebank resources for statistical parsing of Modern Standard Arabic (MSA) sentences. Statistical parsing is significant for NLP tasks that use parsed text as an input such as Information Retrieval, and Machine Translation. We conducted an experiment on 2000 sentences from the Pen Arabic Treebank (PATB) and the parsing performance obtained in terms of Precision, Recall, and F-measure was 82.4%, 86.6%, 84.4%, respectively.
Eltaher, A., H. A. Bak, I. Zidan, and K. Shaalan,
"An Arabic CCG Approach for Determining Constituent Types from Arabic Treebank",
Journal of King Saud University - Computer and Information Sciences, vol. 26, issue 4, pp. 441-449, 2014.
AbstractConverting a treebank into a CCGbank opens the respective language to the sophisticated tools developed for Combinatory Categorial Grammar (CCG) and enriches cross-linguistic development. The conversion is primarily a three-step process: determining constituents’ types, binarization, and category conversion. Usually, this process involves a preprocessing step to the Treebank of choice for correcting brackets and normalizing tags for any changes that were introduced during the manual annotation, as well as extracting morpho-syntactic information that is necessary for determining constituents’ types. In this article, we describe the required preprocessing step on the Arabic Treebank, as well as how to determine Arabic constituents’ types. We conducted an experiment on parts 1 and 2 of the Penn Arabic Treebank (PATB) aimed at converting the PATB into an Arabic CCGbank. The performance of our algorithm when applied to ATB1v2.0 & ATB2v2.0 was 99% identification of head nodes and 100% coverage over the Treebank data.