Issaa, M., A. E. Hassanien, D. Oliva, A. Helmi, and I. Z. A. and Alzohairy,
"ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment",
Expert Systems with Applications, vol. 99, issue 1, pp. 56-70, 2018.
AbstractThe sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time.
Alaa Tharwat, and A. E. Hassanien,
"Chaotic antlion algorithm for parameter optimization of support vector machine",
Applied Intelligence, vol. 48, issue 3, pp. 670–686, 2018.
AbstractSupport Vector Machine (SVM) is one of the well-known classifiers. SVM parameters such as kernel parameters and penalty parameter (C) significantly influence the classification accuracy. In this paper, a novel Chaotic Antlion Optimization (CALO) algorithm has been proposed to optimize the parameters of SVM classifier, so that the classification error can be reduced. To evaluate the proposed algorithm (CALO-SVM), the experiment adopted six standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the CALO-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, standard Ant Lion Optimization (ALO) SVM, and three well-known optimization algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Social Emotional Optimization Algorithm (SEOA). The experimental results proved that the proposed algorithm is capable of finding the optimal values of the SVM parameters and avoids the local optima problem. The results also demonstrated lower classification error rates compared with GA, PSO, and SEOA algorithms.
Hassanien, A. E., S. H. Basha, and A. S. Abdalla,
"Generalization of Fuzzy C-Means Based on Neutrosophic Logic",
Studies in Informatics and Control, vol. 27, issue 1, pp. 43-54, , 2018.
AbstractThis article presents a New Neutrosophic C-Means (NNCMs) method for clustering. It uses the neutrosophic logic (NL), to generalize the Fuzzy C-Means (FCM) clustering system. The NNCMs system assigns objects to clusters using three degrees of membership: a degree of truth, a degree of indeterminacy, and a degree of falsity, rather than only the truth degree used in the FCM. The indeterminacy degree, in the NL, helps in categorizing objects laying in the intersection and the boundary areas. Therefore, the NNCMs reaches more accurate results in clustering. These degrees are initialized randomly without any constraints. That is followed by calculating the clusters’ centers. Then, iteratively, the NNCMs updates the membership values of every object, and the clusters’ centers. Finally, it measures the accuracy and tests the objective function. The performance of the proposed system is tested on the six real-world databases: Iris, Wine, Wisconsin Diagnostic Breast Cancer, Seeds, Pima, and Statlog (Heart). The comparison between the two systems shows that the proposed NNCMs is more accurate.
Inbarani, H. H., S. Udhaya Kumar, A. T. Azar, and A. E. Hassanien,
"Hybrid rough-bijective soft set classification system",
Neural Computing and Applications, , vol. 29, issue 8, pp. 67–78., 2018.
AbstractIn today’s medical world, the patient’s data with symptoms and diseases are expanding rapidly, so that analysis of all factors with updated knowledge about symptoms and corresponding new treatment is merely not possible by medical experts. Hence, the essential for an intelligent system to reflect the different issues and recognize an appropriate model between the different parameters is evident. In recent decades, rough set theory (RST) has been broadly applied in various fields such as medicine, business, education, engineering and multimedia. In this study, a hybrid intelligent system that combines rough set (RST) and bijective soft set theory (BISO) to build a robust classifier model is proposed. The aim of the hybrid system is to exploit the advantages of the constituent components while eliminating their limitations. The resulting approach is thus able to handle data inconsistency in datasets through rough sets, while obtaining high classification accuracy based on prediction using bijective soft sets. Toward estimating the performance of the hybrid rough-bijective soft set (RBISO)-based classification approach, six benchmark medical datasets (Wisconsin breast cancer, liver disorder, hepatitis, Pima Indian diabetes, echocardiogram data and thyroid gland) from the UCI repository of machine learning databases are utilized. Experimental results, based on evaluation in terms of sensitivity, specificity and accuracy, are compared with other well-known classification methods, and the proposed algorithm provides an effective method for medical data classification.
abd elaziz, M., and A. E. Hassanien,
"Modified cuckoo search algorithm with rough sets for feature selection",
Download PDF Neural Computing and Applications, vol. 29, issue 4, pp. 925–934, 2018.
AbstractIn this paper, a modified cuckoo search algorithm with rough sets is presented to deal with high dimensionality data through feature selection. The modified cuckoo search algorithm imitates the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds. The modified cuckoo search uses the rough sets theory to build the fitness function that takes the number of features in reduct set and the classification quality into account. The proposed algorithm is tested and validated benchmark on several benchmark datasets drawn from the UCI repository and using different evaluation criteria as well as a further analysis is carried out by means of the Analysis of Variance test. In addition, the proposed algorithm is experimentally compared with the existing algorithms on discrete datasets. Finally, two learning algorithms, namely K-nearest neighbors and support vector machines are used to evaluate the performance of the proposed approach. The results show that the proposed algorithm can significantly improve the classification performance.
Hassan, G., and A. E. Hassanien,
"Retinal fundus vasculature multilevel segmentation using whale optimization algorithm",
Signal, Image and Video Processing, vol. 12, issue 2, pp. 263–270, 2018.
AbstractThe aim was to present a novel automated approach for extracting the vasculature of retinal fundus images. The proposed vasculature extraction method on retinal fundus images consists of two phases: preprocessing phase and segmentation phase. In the first phase, brightness enhancement is applied for the retinal fundus images. For the vessel segmentation phase, a hybrid model of multilevel thresholding along with whale optimization algorithm (WOA) is performed. WOA is used to improve the segmentation accuracy through finding the n−1 optimal n-level threshold on the fundus image. To evaluate the accuracy, sensitivity, specificity, accuracy, receiver operating characteristic (ROC) curve analysis measurements are used. The proposed approach achieved an overall accuracy of 97.8%, sensitivity of 88.9%, and specificity of 98.7% for the identification of retinal blood vessels by using a dataset that was collected from Bostan diagnostic center in Fayoum city. The area under the ROC curve reached a value of 0.967. Automated identification of retinal blood vessels based on whale algorithm seems highly successful through a comprehensive optimization process of operational parameters.