Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
abd elaziz, M., Y. S. Moemen, A. E. Hassanien, and S. Xiong, "Quantitative Structure-Activity Relationship Model for HCVNS5B inhibitors based on an Antlion Optimizer-Adaptive Neuro-Fuzzy Inference System, ", Scientific report (Nature) , vol. 1506, 2018. Abstract

The global prevalence of hepatitis C Virus (HCV) is approximately 3% and one-fifth of all HCV carriers live in the Middle East, where Egypt has the highest global incidence of HCV infection. Quantitative structure-activity relationship (QSAR) models were used in many applications for predicting the potential effects of chemicals on human health and environment. The adaptive neuro-fuzzy inference system (ANFIS) is one of the most popular regression methods for building a nonlinear QSAR model. However, the quality of ANFIS is influenced by the size of the descriptors, so descriptor selection methods have been proposed, although these methods are affected by slow convergence and high time complexity. To avoid these limitations, the antlion optimizer was used to select relevant descriptors, before constructing a nonlinear QSAR model based on the PIC50 and these descriptors using ANFIS. In our experiments, 1029 compounds were used, which comprised 579 HCVNS5B inhibitors (PIC50 < ~14) and 450 non-HCVNS5B inhibitors (PIC50 > ~14). The experimental results showed that the proposed QSAR model obtained acceptable accuracy according to different measures, where R2 was 0.952 and 0.923 for the training and testing sets, respectively, using cross-validation, while R2 LOO
was 0.8822 using leave-one-out (LOO).

2005
Own, H., and A. E. Hassanien, "Q-shift Complex Wavelet-based Image Registration Algorithm", Proceedings of the 4th International Conference on Computer Recognition Systems, CORES'05, pp. 403-410, Rydzyna Castle, Poland, May 22-25,, 2005. Abstract

This paper presents an efficient image registration technique using the Q-shift complex wavelet transform (Q-shift CWT). It is chosen for its key advantages compared to other wavelet transforms; such as shift invariance, directional selectivity, perfect reconstruction, limited redundancy and efficient computation. The experiments show that the proposed algorithm improves the computational efficiency and yields robust and consistent image registration compared with the classical wavelet transform.

Own, H., and A. Hassanien, "Q-shift Complex Wavelet-based Image Registration Algorithm", Computer Recognition Systems: Springer Berlin/Heidelberg, pp. 403–410, 2005. Abstract
n/a
Own, H., and A. Hassanien, "Q-shift Complex Wavelet-based Image Registration Algorithm", Computer Recognition Systems: Springer Berlin/Heidelberg, pp. 403–410, 2005. Abstract
n/a