Multiple Sequence Alignment Optimization Using Meta-Heuristic Techniques:

Citation:
Issa, M., and A. E. Hassanien, " Multiple Sequence Alignment Optimization Using Meta-Heuristic Techniques: ", Handbook of Research on Machine Learning Innovations and Trends, USA, IGI, 2017.

Abstract:

Sequence alignment is a vital process in many biological applications such as Phylogenetic trees construction, DNA fragment assembly and structure/function prediction. Two kinds of alignment are pairwise alignment which align two sequences and Multiple Sequence alignment (MSA) that align sequences more than two. The accurate method of alignment is based on Dynamic Programming (DP) approach which suffering from increasing time exponentially with increasing the length and the number of the aligned sequences. Stochastic or meta-heuristics techniques speed up alignment algorithm but with near optimal alignment accuracy not as that of DP. Hence, This chapter aims to review the recent development of MSA using meta-heuristics algorithms. In addition, two recent techniques are focused in more deep: the first is Fragmented protein sequence alignment using two-layer particle swarm optimization (FTLPSO). The second is Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm (MO-BFO).

Related External Link