Publications

Export 60 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
E. Emary, H. M. Zawbaa, A. E. Hassanien, and B. PARV, " Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search, , ", Advances in Data Analysis and Classification, , issue (27 May 2016 on line), , pp. pp 1-17, 2017. AbstractWebsite

This paper presents a multi-objective retinal blood vessels localization approach based on flower pollination search algorithm (FPSA) and pattern search (PS) algorithm. FPSA is a new evolutionary algorithm based on the flower pollination process of flowering plants. The proposed multi-objective fitness function uses the flower pollination search algorithm (FPSA) that searches for the optimal clustering of the given retinal image into compact clusters under some constraints. Pattern search (PS) as local search method is then applied to further enhance the segmentation results using another objective function based on shape features. The proposed approach for retinal blood vessels localization is applied on public database namely DRIVE data set. Results demonstrate that the performance of the proposed approach is comparable with state of the art techniques in terms of accuracy, sensitivity, and specificity with many extendable features.

Panda, M., A. E. Hassanien, and A. Abraham, "Hybrid Data Mining Approach for Image Segmentation Based Classification", Biometrics: Concepts, Methodologies, Tools, and Applications: IGI Global, pp. 1543–1561, 2017. Abstract
n/a
2016
Panda, M., A. E. Hassanien, and A. Abraham, "Hybrid Data Mining Approach for Image Segmentation Based Classification", International Journal of Rough Sets and Data Analysis (IJRSDA), vol. 3, issue 2, 2016. AbstractWebsite

Evolutionary harmony search algorithm is used for its capability in finding solution space both locally and globally. In contrast, Wavelet based feature selection, for its ability to provide localized frequency information about a function of a signal, makes it a promising one for efficient classification. Research in this direction states that wavelet based neural network may be trapped to fall in a local minima whereas fuzzy harmony search based algorithm effectively addresses that problem and able to get a near optimal solution. In this, a hybrid wavelet based radial basis function (RBF) neural network (WRBF) and feature subset harmony search based fuzzy discernibility classifier (HSFD) approaches are proposed as a data mining technique for image segmentation based classification. In this paper, the authors use Lena RGB image; Magnetic resonance image (MR) and Computed Tomography (CT) Image for analysis. It is observed from the obtained simulation results that Wavelet based RBF neural network outperforms the harmony search based fuzzy discernibility classifiers.

Sayed, G. I., A. E. Hassanien, T. M. Nassef, and J. - S. Pan, "Alzheimer’s Disease Diagnosis Based on Moth Flame Optimization", International Conference on Genetic and Evolutionary Computing: Springer International Publishing, pp. 298–305, 2016. Abstract
n/a
Kilany, M., A. E. Hassanien, A. Badr, P. - W. Tsai, and J. - S. Pan, "A Behavioral Action Sequences Process Design", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 502–512, 2016. Abstract
n/a
Sayed, G. I., A. Darwish, A. E. Hassanien, and J. - S. Pan, "Breast Cancer Diagnosis Approach Based on Meta-Heuristic Optimization Algorithm Inspired by the Bubble-Net Hunting Strategy of Whales", International Conference on Genetic and Evolutionary Computing: Springer International Publishing, pp. 306–313, 2016. Abstract
n/a
Alaa Tharwat, T. Gaber, A. E. Hassanien, G. Schaefer, and J. - S. Pan, "A Fully-Automated Zebra Animal Identification Approach Based on SIFT Features", International Conference on Genetic and Evolutionary Computing: Springer International Publishing, pp. 289–297, 2016. Abstract
n/a
Fattah, M. A., S. Abuelenin, A. E. Hassanien, and J. - S. Pan, "Handwritten Arabic Manuscript Image Binarization Using Sine Cosine Optimization Algorithm", International Conference on Genetic and Evolutionary Computing: Springer International Publishing, pp. 273–280, 2016. Abstract
n/a
Ahmed, K., A. A. Ewees, M. abd elaziz, A. E. Hassanien, T. Gaber, P. - W. Tsai, and J. - S. Pan, "A Hybrid Krill-ANFIS Model for Wind Speed Forecasting", International Conference on Advanced Intelligent Systems and Informatics: Springer International Publishing, pp. 365–372, 2016. Abstract
n/a
2015
Hossam M. Zawbaa, E. Emary, A. E. Hassanien, and B. PARV, "A wrapper approach for feature selection based on swarm optimization algorithm inspired from the behavior of social-spiders", 7th IEEE International Conference of Soft Computing and Pattern Recognition, , Kyushu University, Fukuoka, Japan,, November 13 - 1, 2015. Abstract

In this paper, a proposed system for feature selection
based on social spider optimization (SSO) is proposed. SSO is
used in the proposed system as searching method to find optimal
feature set maximizing classification performance and mimics
the cooperative behavior mechanism of social spiders in nature.
The proposed SSO algorithm considers two different search
agents (social members) male and female spiders, that simulate
a group of spiders with interaction to each other based on the
biological laws of the cooperative colony. Depending on spider
gender, each spider (individual) is simulating a set of different
evolutionary operators of different cooperative behaviors that are
typically found in the colony. The proposed system is evaluated
using different evaluation criteria on 18 different datasets, which
compared with two common search methods namely particle
swarm optimization (PSO), and genetic algorithm (GA). SSO
algorithm proves an advance in classification performance using
different evaluation indicators

Emary, 31. E., K. K. A. Ghany, H. M. Zawbaa, A. E. Hassanien, and B. Pârv, "Firefly Optimization Algorithm for Feature Selection", Proceedings of the 7th Balkan Conference on Informatics Conference (BCI '15 ), 2015. Abstract

In this paper, a system for feature selection based on firefly algorithm (FFA) optimization is proposed. Data sets ordinarily includes a huge number of attributes, with irrelevant and redundant attributes. Redundant and irrelevant attributes might reduce the classification accuracy because of the large search space. The main goal of attribute reduction is to choose a subset of relevant attributes from a huge number of available attributes to obtain comparable or even better classification accuracy from using all attributes. A system for feature selection is proposed in this paper using a modified version of the firefly algorithm (FFA) optimization. The modified FFA algorithm adaptively balance the exploration and exploitation to quickly find the optimal solution. FFA is a new evolutionary computation technique, inspired by the flash lighting process of fireflies. The FFA can quickly search the feature space for optimal or near-optimal feature subset minimizing a given fitness function. The proposed fitness function used incorporate both classification accuracy and feature reduction size. The proposed system was tested on eighteen data sets and proves advance over other search methods as particle swarm optimization (PSO) and genetic algorithm (GA) optimizers commonly used in this context using different evaluation indicators

Hassanien, A. E., Mostafa A. Salama, J. Platos, and V. Snásel, "Rough local transfer function for cardiac disorders detection using heart sounds. ", Logic Journal of the IGPL, vol. 23, issue 3, pp. 506-520, 2015. Website
Eid Emary, H. M. Zawbaa, K. K. A. Ghany, A. E. Hassanien, and B. Parv, "Firefly optimization algorithm for feature selection", Proceedings of the 7th Balkan Conference on Informatics Conference: ACM, pp. 26, 2015. Abstract
n/a
Zawbaa, H. M., A. E. Hassanien, E. Emary, Waleed Yamany, and B. PARV, "Hybrid flower pollination algorithm with rough sets for feature selection", Computer Engineering Conference (ICENCO), 2015 11th International: IEEE, pp. 278–283, 2015. Abstract
n/a
Hassanien, A. E., M. A. Salama, J. Platos, and V. Snasel, "Rough local transfer function for cardiac disorders detection using heart sounds", Logic Journal of IGPL: Oxford University Press, pp. jzv009, 2015. Abstract
n/a
Zawbaa, H. M., E. Emary, A. E. Hassanien, and B. PARV, "A wrapper approach for feature selection based on swarm optimization algorithm inspired from the behavior of social-spiders", Soft Computing and Pattern Recognition (SoCPaR), 2015 7th International Conference of: IEEE, pp. 25–30, 2015. Abstract
n/a
2014
P. K. Nizar Banu, H. H. Inbarani, A. T. Azar, H. S. Own, and A. E. Hassanien, "Rough Set Based Feature Selection for Egyptian Neonatal Jaundice ", The 2nd International Conference on Advanced Machine Learning Technologies and Applications , Egypt, November 17-19, , 2014.
Hassanien, A. E., M. Salama, J. Platos, and V. Snasel, "Rough local transfer function for cardiac disorders detection using heart sounds ", Logic Journal of the IGPL, Oxford, vol. (in press), 2014. Website
Fattah, M. A., M. I. Waly, M. A. A. ELsoud, A. E. Hassanien, M. F. Tolba, J. Platos, and G. Schaefer, "An improved prediction approach for progression of ocular hypertension to primary open angle glaucoma", Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014: Springer International Publishing, pp. 405–412, 2014. Abstract
n/a
2012
Panda, M., N. El-Bendary, M. Salama, A. E. Hassanien, and A. Abraham, "Social Networks Analysis: Basics, Measures and Visualizing Authorship Networks in DBLP Data", Computational Social Networks: Mining and Visualization, London, Series in Computer Communications and Networks, Springer Verlag, 2012. Abstract

Social Network Analysis (SNA) is becoming an important tool for investigators, but all the necessary information is often available in a distributed environment. Currently there is no information system that helps managers and team leaders to monitor the status of a social network. This chapter presents an overview of the basic concepts of social networks in data analysis including social networks analysis metrics and performances. Different problems in social networks are discussed such as uncertainty, missing data and finding the shortest path in social network. Community structure, detection and visualization in social network analysis is also discussed and reviewed. This chapter bridges the gap among the users by combining social network analysis methods and information visualization technology to help user visually identify the occurrence of a possible relationship amongst the members in a social network. In addition, briefly describing the different performance measures that have been encountered during any network analysis in order to understand the fundamental behind the comprehension. This chapter also, presents an online analysis tool called Forcoa.NET, which is built over the DBLP dataset of publications from the field of computer science, which is focused on the analysis and visualization of the co-authorship relationship based on the intensity and topic of joint publications. Challenges to be ad dressed and future directions of research are also presented and an extensive bibliography is included.order to understand the fundamental behind the comprehension. This chapter also, presents an online analysis tool called Forcoa.NET, which is built over the DBLP dataset of publications from the field of computer science, which is focused on the analysis and visualization of the co-authorship relationship based on the intensity and topic of joint publications. Challenges to be ad dressed and future directions of research are also presented and an extensive bibliography is included.

Salama, M., M. Panda, Y. Elbarawy, A. E. Hassanien, and A. Abraham, "Social Networks Security and Privacy: Basics,Threats and Case Study to Visualize Foreign Terrorist Network dataset", Computational Social Networks: Security and Privacy, London, Series in Computer Communications and Networks, Springer Verlag, , 2012. Abstract

The continuous self-growing nature of social networks makes it hard to define a line of safety around these networks. Users in social networks are not interacting with the web only, but also with trusted groups that may contain enemies. There are different kinds of attacks on these networks including causing damage to the computer systems and steeling information about users. These attacks are not affecting individuals only, but also the organizations they are belonging to. Protection from these attacks should be performed by the users and security experts of the network. Advices should be provided to users of these social networks. Also security-experts should be sure that the contents transmitted through the network do not contain malicious or harmful data. This chapter shows the security risks and the tasks applied to minimize those risks. Explain the most famous ways that attackers and malicious use. Then show the security measures for each way. Also present a security guide and a social network security and privacy made in 2011, and finally a case study about the list of Foreign Terrorist Network dataset.

Ghali, N., M. Panda, A. E. Hassanien, A. Abraham, and V. Snasel, "Social Networks: Computational Aspects and Mining", Computational Social Networks: Tools, Perspectives and Applications, London, Computer and Communication Networks Springer Series, 2012. Abstract

Computational social science is a new emerging field that has overlapping regions from Mathematics, Psychology, Computer Sciences, Sociology,and Management. Social computing is concerned with the intersection of social behavior and computational systems. It supports any sort of social behavior in or through computational systems. It is based on creating or recreating social conventions and social contexts through the use of software and technology. Thus, blogs, email, instant messaging, social network services, wikis, social bookmarking, and other instances of what is often called social software illustrate ideas from social computing. Social network analysis is the study of relationships among social entities. It is becoming an important tool for investigators. However all the necessary information is often distributed over a number of Web sites. Interest in this field is blossoming as traditional practitioners in the social and behavioral sciences are being joined by researchers from statistics, graph theory, machine learning and data mining. In this chapter, we illustrate the concept of social networks from a computational point of view, with a focus on practical services, tools, and applications and open avenues for further research. Challenges to be addressed and future directions of research are presented and an extensive bibliography is also included.

Salama, M., M. Panda, Y. Elbarawy, A. E. Hassanien, and A. Abraham, "Computational Social Networks: Security and Privacy", Computational Social Networks: Springer London, pp. 3–21, 2012. Abstract
n/a
Salama, M., M. Panda, Y. Elbarawy, A. E. Hassanien, and A. Abraham, "Computational Social Networks: Security and Privacy", Computational Social Networks: Springer London, pp. 3–21, 2012. Abstract
n/a
Tourism