Publications

Export 48 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Elhabashy, M. M., H. M. Sharaf, and D. K. Ibrahim, "Reliable protection for static synchronous series compensated double-circuit transmission lines based on positive sequence active power calculations using PMUs", Electric Power Systems Research, vol. 223, issue October 2023, pp. Article no.109695, 2023. AbstractWebsite

Static Synchronous Series Compensator (SSSC) allows dynamic control capabilities of transmitted power. Unfortunately, inserting SSSC in transmission lines (TLs) disturbs impedance-based distance relays as their directionality and reachability are affected by overreaching or underreaching. This paper proposes an approach for protecting double-circuit TLs compensated with SSSC. It relies on the centralized wide-area protection architecture to calculate a proposed driven index: the rate of change of positive sequence active power difference. Phasor measurement units (PMUs) at TL ends estimate voltage and current phasors to calculate the positive sequence active power at TL ends and send them to the system protection center that evaluates the index and gives the trip decision or not. Ensuring the sensitivity, dependability, and security of the approach is essential. So, the overall scheme integrates two other algorithms. One is based on the polarities of the incremental power at both ends to determine whether the fault is internal or external. The other evaluates the phase angle of the integrated impedance to deactivate the power swing-blocking function for fault detection. The scheme's effectiveness is validated comprehensively through extensive simulation tests for fault and system conditions. The results show that the proposed approach is fast, secure, selective, and reliable.

2022
El-Sayed, L. M. A., D. K. Ibrahim, M. I. gilany, and A. ' F. El'Gharably, "Enhancing Distance Relay Performance Using Wide-Area Protection for Detecting Symmetrical/Unsymmetrical Faults during Power Swings", Alexandria Engineering Journal, vol. 61, issue 9, pp. 6869-6886, 2022. Abstract

The distance protection in transmission networks is vulnerable to malfunction during a power swing. Distance relays have a power swing blocking (PSB) function that prevents the relay from operating during a power swing. However, during a power swing, the relay will be able to identify and clear any fault. This paper offers a scheme for detecting symmetrical/unsymmetrical faults through power swing by estimating the maximum rate of change of a (DI- DV) ellipse circumference.
The ellipse circumference of each phase is constructed at each power frequency cycle to consistently tracking the distinction in the measured current and voltage differences between the line’s two ends. The main feature of the suggested work compared to previous works is the ability to detect numerous high impedance faults (HIFs) during single mode (slow/fast) power swing or multi-mode power swing in addition to the opportunity to detect faults during asymmetrical power swing. The suggested scheme is tested in a two-area, four-machine power system and tested also in the standard three-machine, nine-bus system using ATP software. The results reveal that the improved protective scheme performs well in fault conditions with and without power swing, and they confirm the scheme’s suitability for interconnected networks.

Mokhtar, N. M., H. Mohamed Sharaf, D. K. Ibrahim, and A. ’F. El’Gharably, "Proposed Ranked Strategy for Technical and Economical Enhancement of EVs Charging with High Penetration Level", IEEE Access, vol. 10, pp. 44738-44755, 2022. Abstract

Car exhaust is one of the most common causes of ozone hole aggravation, electrical vehicles (EVs) represent a promising solution to avoid this problem. Despite the benefits of EVs, their random charging behavior causes some difficulties regarding the electric network performance, such as increased energy losses and voltage deviations. This paper aims to achieve the proper scheduling of the EVs charging process, avoid its negative impacts on the network, and satisfy the EVs users’ requirements. The EVs charging process is formulated as an optimization problem and solved using particle swarm optimization. The optimization problem formulation considers the EV arrival and departure times and the state of charge required by the user. Different strategies such as separated, accumulated, and ranked strategies with continuous or interrupted fixed charging have been applied to solve the uncoordinated EVs charging problem. These strategies are extensively tested on the modified IEEE 31 bus system (499-node network), using the combination of both Open DSS and MATLAB m-files. The simulation results confirm the effectiveness of the proposed accumulated ranked strategy with interrupted fixed charging in improving the overall power system performance. The achieved improvements include minimizing: the peak power consumed, the peak power losses, and the voltage drop. Moreover, the cost of the EVs charging in most of the feeders has been decreased to a satisfying value. A comparison between the proposed strategy and some previously reported strategies has been performed to ensure the technical and economic enhancement of the proposed strategy.

2021
El-Sayed, L. M. A., D. K. Ibrahim, M. I. gilany, and A. ’F. El’Gharably, "An Accurate Technique for Supervising Distance Relays during Power Swing", Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, issue 3, pp. 1279-1290, 2021. AbstractWebsite

Power swing is a power system transient phenomenon that arises due to several reasons including line switching, line outage, sudden increment or decrement in load, faults, etc. Unnecessary tripping during power swing and unnecessary blocking for faults occur during power swing result in distance relay maloperation. Several cascaded outages and major worldwide blackouts have occurred due to maloperation of distance relays. This paper proposes a technique for supervising distance relays during power swing. The proposed
online technique discriminates real faults and power swing accurately. It relies on constructing a locus diagram for the current and voltage differences (ΔI-ΔV) between the two ends of the protected line. The locus is estimated at every power frequency cycle to continuously monitor the state of the line by utilizing the synchrophasor measurements at the sending and receiving ends of the line. The proposed technique is tested for two-area, four-machine power system under faults at different locations of zone-1 and zone-2 regions of distance relays, fault resistances, fault inception angles and slip frequencies using MATLAB software. The simulation results proved the superior improvement of distance relay performance for handling power swing blocking and unblocking actions.

Magdy, M., M. Elshahed, and D. K. Ibrahim, "Enhancing PV Hosting Capacity Using Smart Inverters and Time of Use Tariffs", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, issue 3, pp. 905–920, 2021. Abstract

Optimizing the Photovoltaic (PV) hosting capacity (HC) considering the irradiance’s variability properly and the load during the day represents a critical matter. Typically, the high PV HC results in overvoltage and high voltage fluctuations at the point of common coupling (PCC) with the utility. In this paper, a new algorithm is proposed for enhancing PV HC by considering the smart inverter functions to overcome key PCC issues. The Volt-Var and dynamic reactive current functions of the smart inverter are suggested to increase the PV HC. Furthermore, the time of use tariff is utilized for mitigating the duck curve issue at the utility by reducing the peak to valley difference of the substation net load curve. Quasi-static timeseries simulations are performed using the OpenDSS program to prove the effectiveness of the proposed algorithm. The proposed algorithm is validated by extensive numerical analysis on the standard IEEE 123 node test feeder. Deduced outcomes are very encouraging in mitigating the overvoltage, reducing the energy losses, limiting the considerable number of on-load tap changes, and alleviating the high voltage fluctuations.

Dawoud, M. A., D. K. Ibrahim, M. I. gilany, and A. ’F. El’Gharably, "Proposed Application for Rate of Change of Phasor Voltage in Fault Detection and Coordination Studies in MV Distribution Networks", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, issue 3, pp. 815–831, 2021. Abstract

Selectivity, reliability and security of electrical distribution systems are important issues in modern power systems. The protection coordination approach that depends on fault current only is no longer valid for medium voltage (MV) distribution systems; it has major limitations because of varying network conditions. In this paper, a new protective coordination technique is proposed in MV distribution networks. The proposed technique is based on calculating the rate of change of phasor voltage (ROCOV) in each feeder to discriminate and locate the faulty section. The measured ROCOV values and the required relay operating time take the shape of the standard inverse-time characteristics that are used for overcurrent relay. The system allows full coordination between the primary and backup relays. Without any need for communications, the proposed technique proved good robustness during different transient healthy conditions. The setting of the proposed relay does not need to be re-adjusted with the changes in network operating conditions since it depends on system voltage not the loading current. The proposed technique is tested using extensive MATLAB simulations under different faulty and healthy conditions in a MV distribution system. The results indicate that the proposed technique meets the fundamental protective requirements such as selectivity, reliability, sensitivity, and speed as well.

Dawoud, M. A., D. K. Ibrahim, M. I. gilany, and A. ’F. El’Gharably, "Robust Coordination Scheme for Microgrids Protection Based on the Rate of Change of Voltage", IEEE Access, vol. 9, pp. 156283-156296, 2021. Abstract

The wide application of microgrid concept leads to challenges for the traditional protection
of distribution networks because of the changes in short circuit level and network topology during the two
modes of microgrid operation. This paper proposes a promising solution for these problems by offering
a new protection coordination scheme not affected by the variation of short circuit level or the changes
in network topology. The proposed protection scheme is based on local measurements at relay location
with low sampling frequency by computing the rate of change of fundamental voltage (ROCOV) to detect
different fault types, identify the faulty zone accurately and guarantee robust coordination between primary
and backup relays. The proposed coordination scheme can be achieved by optimizing either two settings for
relay characteristic (time dial setting and pickup value) or four settings (time dial setting, pickup and the
parameters that control the characteristic shape (A & B)). The proposed scheme is extensively tested using
MATLAB simulations on the modied IEEE 14 bus meshed network embedded with synchronous/inverter-
based distributed generation units under wide variations in operating conditions and short circuit levels
for both grid-connected and islanded modes of operation. The achieved results conrm that the proposed
coordination scheme can maintain the coordination between primary and backup relays for different fault
locations, types and different topologies. It provides selective, reliable, and secured microgrid operation
compared with conventional schemes, using fault current limiters and some other techniques discussed in
the literature.

2020
Rashad, B. A. - E., D. K. Ibrahim, M. I. Gilany, and A. ’F. El’Gharably, "Adaptive Single-End Transient-based Scheme for Detection and Location of Open Conductor Faults in HV Transmission Lines", Electric Power Systems Research, vol. 182, issue May 2020, pp. Article 106252, 2020. Abstract

Detection and location of open conductor in transmission systems using single-end data is a challenging task. This paper proposes a novel integrated scheme to detect and locate different types of open conductor faults (OCFs) in HV transmission systems. The proposed scheme unit (PSU) applies Discrete Wavelet Transform (DWT) with single-level decomposition on local current signals to detect OCFs correctly using adaptively estimated threshold values. PSU is also capable of dealing correctly with various normal transient conditions such as load capacitor switching. To ensure quick repair of OCFs, PSU captures the transient voltage surges and applies a fault location scheme using DWT and Clark Transformation to accurately estimate the location of different OCFs types. Extensive ATP simulations are employed to check the PSU performance under various OCFs conditions on a 345 kV, 100 km transmission line. The achieved results confirm the effectiveness, robustness, and reliability of PSU in detecting correctly OCFs as well as the low-impedance faults within only 1.25 cycles. Moreover, the percentage error in estimating OCFs location is less than 1%. PSU has also confirmed its capability to be applied in cascaded lines without any communication or synchronization between PSUs.

Younis, R. A., D. K. Ibrahim, E. M.Aboul-Zahab, and A. ’fotouh El'Gharably, "Techno-economic investigation using several metaheuristic algorithms for optimal sizing of stand-alone microgrid incorporating hybrid renewable energy sources and hybrid energy storage system", International Journal on Energy Conversion (I.R.E.CON.), vol. 8, issue 4, pp. 141- 152, 2020. Abstract

Increasing energy demand worldwide has resulted in more penetration of renewable sources for developing non-polluted electric energy despite their prices are not economically competitive to traditional generation systems due to intermittent nature of renewable resources. Energy storage systems are used to counteract the intermittent nature of renewable sources. Therefore, the optimal sizing and design of stand-alone renewable generating systems is a significant concern to get a more cost-effective system. This paper focuses on achieving the optimum design and size of a microgrid to meet the load requirements and reducing the total cost including capital, investment, operational and maintenance costs. For this aim, the sizing problem is formulated to be solved using three well-known metaheuristic algorithms, namely, Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO) and Cuckoo Search Optimization (CSO). The employed microgrid comprises hybrid renewable energy sources of PV/Wind systems integrated with a hybrid energy storage system of Battery and FC/Electrolyzer set for supplying AC loads located in Zafarana, Egypt. On the basis of real meteorological data of the studied location, the produced energies from the renewable sources are estimated using MATLAB developed algorithms. The simulation results showed that the optimized design using CSO can robustly and efficiently yield the optimal design of a microgrid.

2019
Magdy, M., M. Elshahed, and D. K. Ibrahim, "Impacts of Distributed and Centralized Grid- Connected PV on Radial Distribution Networks", 21st International Middle East Power Systems Conference, MEPCON, Tanta University, Egypt, December 17-19, 2019. Abstract

This paper investigates the impacts of the centralized and distributed grid-connected photovoltaic systems on radial distribution networks. Different weather conditions are considered. Different PV penetration levels are investigated in both centralized and distributed PV configurations. Daily simulation is performed using the Open Distribution System Simulator (OpenDSS). The study will include the impacts on voltage magnitude, the voltage regulators, the voltage unbalance factor and losses during the day. The simulations results are presented in details and conclusions are drawn based on them.

Younis, R. A., D. K. Ibrahim, E. M.Aboul-Zahab, and A. ’fotouh El'Gharably, "Power Management Regulation Control Integrated with Demand Side Management for Stand-alone Hybrid Microgrid Considering Battery Degradation", International Journal of Renewable Energy Research, vol. 9, issue 4, pp. 1912-1923, 2019. AbstractWebsite

A new Power Management Regulation Control (PMRC) integrated with Demand Side Management (DSM) strategies is proposed to enhance the Energy Management System (EMS) of a stand-alone hybrid microgrid. The microgrid combines Wind and PV systems as Renewable Energy Sources (RES) with a hybrid Energy Storage System (ESS) of Battery and Fuel Cell/Electrolyzer set. Towards achieving Net Zero Energy Supply, such microgrid is adequate in remote and isolated new communities with AC controllable critical and noncritical loads. The proposed PMRC implies two-levels of control based on Multi-Agent System (MAS). The first level keeps the output power of each source in its maximum available output power by applying maximum power point tracking (MPPT) techniques. The second level is based on making proper decisions for achieving the power balancing regulation and coordination between the available and the reserve power of the RES and ESS under different operating modes. Valley Filling, Energy Conservation and Load Shifting are applied as DSM strategies to improve loads sustainability during system contingencies. Considering the battery as the most expensive part in the microgrid, the effectiveness of the proposed strategy is further verified by determining the maximum permissible estimated battery lifetime during the operation in all possible scenarios. Extensive simulation studies for various scenarios of microgrid operation in a year were carried out using Matlab/ Simulink with realistic typical wind speed, solar irradiation data and restricted by the status of available ESS.

Hamdy, M., M. Elshahed, D. Khalil, and E. E. - D. A. El-Zahab, "Stochastic Unit Commitment Incorporating Demand Side Management and Optimal Storage Capacity", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 43, issue 1, pp. 559–571, 2019. AbstractWebsite

High penetration of wind energy imposes several operational challenges due to its uncertainty and intermittent nature. Flexible energy resources represent key solutions to compensate for power mismatch associated with wind power (WP) uncertainty and intermittency. This paper proposes a new stochastic unit commitment (SUC) problem formulation including high penetration of wind energy, energy storage system (ESS), and demand side management. Firstly, the Latin hypercube sampling is combined with Cholesky decomposition method to generate different WP scenarios. The simulated scenarios are then reduced using the fast forward selection algorithm. Finally, a novel SUC formulation implements these reduced scenarios to size the ESS optimally, considering its cost and benefit maximization of wind energy. To validate the proposed approach, a nine-unit test system is used to demonstrate the reduction in the operational cost and the increase in the utilized wind energy under different operational conditions.

2017
Ibrahim, D. K., E. E. D. A. El Zahab, and S. A. E. A. Mostafa, "New Coordination Approach to Minimize the Number of Re-adjusted Relays When Adding DGs in Interconnected Power Systems", Journal of Electrical Engineering & Technology (JEET), vol. 12, issue 2, pp. 502-512, 2017. AbstractWebsite

The presence of DGs in power system networks tends to negatively affect the protective relays coordination. The proposed method introduces an approach to minimize the numbers of relays that acquire new settings on contrary to their original settings (case without DG), to achieve relays coordination in case of adding DG, since relays coordination with minimum number of relays of readjusted settings represents economical target, especially in networks containing mixture of electromechanical and adaptive digital relays. The scheme decides the possible minimum number of re-adjusted relays and their locations in an optimum manner to achieve proper relays coordination in case of adding DGs. The proposed approach is divided into two successive phases; the first phase is stopped when the first relays coordination solution is achieved. The second phase increases the possibility to keep higher number of relays at their original settings than that obtained in first phase through achieving multi solutions of relays coordination. The proposed approach is implemented and effectively tested on the well-known IEEE-39 bus test system.

Ibrahim, D. K., E. E. D. A. El Zahab, and S. A. E. A. Mostafa, "New coordination approach to minimize the number of re-adjusted relays when adding DGs in interconnected power systems with a minimum value of fault current limiter", International Journal of Electrical Power & Energy Systems, vol. 85: Elsevier, pp. 32-41, 2017. AbstractWebsite

The presence of DGs in power networks tends to negatively affect relays coordination. Adding fault current limiters FCLs is one of the possible solutions to mitigate negative impacts of DGs addition on protection systems. Traditional schemes have estimated the minimum value of FCL to restore relays coordination when adding DGs without resetting of any relays. That minimum value of FCL in such case is called a critical value, where below this value the relays coordination will be lost.
Nowadays, designing FCL to simultaneously achieve two conflicted objectives of good performance and low cost is considered a great challenge. The paper introduces a new scheme to determine to what extent we could decrease FCL impedance value below its critical value with re-adjusting the original settings of only one adaptive relay to get relays coordination. Decreasing FCL value below its critical value will reduce the cost especially for superconductivity FCL. The proposed scheme can determine the location of that selected relay to be an adaptive one and estimate its re-adjusted new settings to be applied when DGs are added while inserting the reduced value of FCL.
Actually the proposed scheme can be applied for any networks irrespective of the number of added DGs and their capacities; while having an adaptive relay is the only requirement to implement it. The proposed approach is implemented and effectively tested on the large well-known interconnected IEEE-39 bus test system with 84 relays. Its results are compared with other approaches where, no readjusted relays settings are applied. A noteworthy advantage of the proposed scheme is the ability to implement a reduced FCL value than the critical value, by adjusting only one relay settings in the whole network. The proposed scheme may also be extended to re-adjust settings of more than one relay and get further reduced value of FCL. Furthermore, it is also shown that a more optimum value of the total operating time of all primary relays for near end faults is achieved when applying the proposed method rather than other traditional schemes.

Alham, M. H., M. Elshahed, D. K. Ibrahim, and E. E. D. A. El Zahab, "Optimal operation of power system incorporating wind energy with demand side management", Ain Shams Engineering Journal, vol. 8, issue 1: Elsevier, pp. 1-7, 2017. AbstractWebsite

The high penetration of the wind energy in the power systems raises some issues such as ramping and mismatch between the wind power and power demand. One of the possible solutions to these issues is the demand side management (DSM). In this paper, dynamic economic dispatch (DED) incorporating different penetration levels of wind energy and utilizing the DSM is proposed to solve the issues related to high penetration of wind energy. The effect of utilizing the DSM on the operation cost with different test cases is discussed. The General Algebraic Modeling System (GAMS) using BARON as a solver and genetic algorithm (GA) with hybrid function are used to solve the proposed DED model and a comparison between them is assessed. The proposed model is applied to a six units’ generation system to test the effectiveness of the proposed model.

2016
Ibrahim, I. M., D. K. Ibrahim, and E. E. D. A. El Zahab, "A Proposed Busbar Protection Scheme Immune to the Impact of Outflow Current during Internal Faults", International Middle-East Power Systems Conference (MEPCON), Helwan University, Egypt, December 27-29, 2016. Abstract

This paper describes a proposed busbar protection scheme immune to the impact of the outflow current during internal faults based on the combination of magnitude and phase angle comparisons. The effective relay performance is achieved by implementing the phaselet approach and the adaptive digital mimic filter. The performance of the proposed scheme is extensively analyzed for different fault conditions on a breaker and a half bus substation to ensure its proper response during internal, external and evolving faults. Tests are carried out to investigate the impact of the circulating current, CT saturation, fault inception angle and high fault resistance. ATP simulations ensure that the proposed scheme can fulfill all busbar protection requirements within quarter cycle operation time and is not affected by the outflow current during internal faults.

Alham, M. H., M. Elshahed, D. K. Ibrahim, and E. E. D. A. El Zahab, "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management", Renewable Energy, vol. 96: Pergamon, pp. 800-811, 2016. AbstractWebsite

Reducing carbon emissions is an important goal for the whole world; a high penetration of wind energy can help in reducing emissions. However, great increase in wind energy usage raises some issues concerning its variability and stochastic nature. These issues increase the importance of studying methods of wind energy representation, and in the same time studying the effect of using some flexible resources in decreasing those issues. This paper proposes a dynamic economic emission dispatch (DEED) model incorporating high wind penetration considering its intermittency and uncertainty. Energy storage system (ESS) and demand side management (DSM) are implemented in order to study their effect on the cost, emission, and wind energy utilization. The GAMS software has been utilized to solve this DEED problem. The achieved results show the importance of using ESS and DSM in decreasing both cost and emission, and increasing the wind energy utilization.

Al-Barashi, M. M., D. K. Ibrahim, and E. E. - D. A. El-Zahab, "Evaluating The Energy System in Yemen", Journal of Electric Engineering, JEE, vol. 16, issue 1, pp. 338-342 (Article 16.1.41), 2016. AbstractWebsite

This paper presents a deep analysis for the energy system in Yemen, which consists of thermal power plants taking into account the strengths and weaknesses of its power system. The investigation results show that Yemen power system suffers lacking of energy efficiency (EE), weak institutional capacity, high losses in the generation, transmission and distribution grids, and currently the disability to invest in renewable energy (RE). Yemen should focus on foundational activities to build institutional capacity and mobilize resources to initiate suitable energy efficiency policies and measures. Yemen should also focus on exploring the opportunities of designing innovative energy systems based on decentralized small-scale power generation. Microgrids could enable power supply to remote areas at lower costs than required by traditional infrastructure.

Hamza El-Sayed, K., D. K. Ibrahim, and E. E. - D. A. El-Zahab, "Operation and Control of 850kW Doubly Fed Induction Generators Based Al-Zafarana Egyptian Wind Farm", International Journal of Electrical Energy, vol. 4, issue 2, pp. 112-121, 2016. AbstractWebsite

With increasing global great concern over greenhouse gas emissions and their harmful effects on environment, huge number of wind turbines are recently connected to electrical grids. Nowadays, Egypt has continuous development of wind energy projects; it makes a great effort at Gulf of Suez area especially in Al Zafarana district. This paper focuses on studying the dynamic performance of the 5th phase of Al-Zafarana wind farm, which is made of 100 Gamesa G52/ 850kW Doubly Fed Induction Generator (DFIG) machines, using Digsilent /PowerFactory simulation tool as an advanced simulation package. As DFIG is currently one of the most common types employed for Wind Energy Conversion System (WECS), the paper also implements a dynamic model for 850 kW DFIG machine based WECS in Matlab / Simulink environment. A dual reference frame control strategy is applied here to improve the dynamic system performance during balanced and unbalanced grid voltage conditions.

2015
Al-Barashi, M. M., D. K. Ibrahim, and E. E. - D. A. El-Zahab, "Evaluating Connecting Al-Mukha New Wind Farm to Yemen Power System", International Journal of Electrical Energy, vol. 3, issue 2, pp. 57-67, 2015. AbstractWebsite

This paper presents modeling and impact analysis of Al-Mukha wind farm (MWF) on Yemen power system, which is made of thermal power plants. In this paper, four kinds of major components are modeled: a 60MW wind farm, a transmission network, thermal power plants, and the Yemen power system load. To analyze the impact of the wind power generation to the Yemen power system, simulations are carried out for two case studies by using the DIgSILENT program. The first is the case of grid impact studies: impact on thermal limits, voltage variations, and system stability, in which an aggregated model of the wind farm is used. The other is the dynamic performance of the wind farm by analyzing low-voltage ride through LVRT, harmonics and flicker impact on the basis of the detailed wind farm layout with 30 wind turbines (WTs) arranged in four stands and the external grid of 2175MVA short-circuit capacity. The simulation results show that the loading of most lines and voltage variations are slightly reduced. In addition, there is no harmful effect on the system stability and also the wind farm is capable to ride through the grid fault. Finally, it is shown that the wind farm contributes voltage and current harmonics higher than the permissible limits while the flicker levels are far below any critical values. 

Shafei, M. A. R., D. K. Ibrahim, A. M. Ali, M. A. A. Younes, and E. E. L. - D. A. EL-Zahab, "Novel approach for hydrokinetic turbine applications", Energy for Sustainable Development, vol. 27: Elsevier, pp. 120–126, 2015. AbstractWebsite

By 2017, Egypt is expected to finish its sixth hydropower plant which is associated with the new Assiut barrage. Based on any hydraulic structure's design, there is enormous kinetic energy created downstream of the gates. This super power water jet generated under dams/barrage gates creates a destructive scouring effect downstream of the gates. In this work, a novel approach for hydrokinetic energy application is presented. The new approach proposes installing a farm of hydrokinetic turbines on the stilling basin of the spillways of the barrage's gate. This approach does not only magnify the total electric energy which was untapped in the past but also dissipates the enormous kinetic energy downstream of the gates. The total expected captured electric power from the barrage reaches 14.88 MW compared to 32 MW rated value of the existing hydropower plant.

Mohamed, S. H., Z. H. H., I. D. Khalil, and A. E. L. - Z. E. EL-Din, "A Proposed Coordination Strategy for Meshed Distribution Systems with DG Considering User-defined Characteristics of Directional Inverse Time Overcurrent Relays", International Journal of Electrical Power & Energy systems, Elsevier, vol. 65: Elsevier, pp. 49-58, 2015. AbstractWebsite

In this paper, coordination strategy that considers using user defined characteristics for the inverse time overcurrent relays is proposed. Typically, the coordination between relays operating times within meshed systems are achieved by adjusting two relay settings; pick up current and time multiplier setting (TDS and Ip). The equation that models the digital inverse time overcurrent relay operation has two constants; one of them represents the constant for relay characteristics (A) and the other one represents the inverse time type (B). The proposed coordination strategy considers the two relay characteristics constants as continuous variable settings that can be adjusted. These (A and B) values are chosen optimally in addition to (TDS and Ip) to achieve coordination. The coordination problem is formulated as a nonlinear programming problem where the main objective is to minimize the overall time of operation of relays during primary and backup operation considering faults at different locations. The results are compared against the relay coordination using the conventional settings. The problem is applied to the meshed power distribution network of the IEEE 30 bus systems equipped with synchronous based DGs. The results show that the proposed strategy can significantly reduce the overall relay operating time and thus making it an attractive option for meshed distribution systems with DG.

2014
Shafei, M. A. R., D. K. Ibrahim, A. El-Zahab, E. El-Din, and M. A. A. Younes, "Biogeography-Based Optimization Technique for maximum power tracking of hydrokinetic turbines", Renewable Energy Research and Application (ICRERA), 2014 International Conference on: IEEE, pp. 789–794, 2014. Abstract

Hydrokinetic energy, referring to the energy contained in moving water, is a renewable energy source that gained much consideration in the past years and expected to play a significant role in the future. The energy is initiated in all moving water masses, but is significantly economic to convert for water masses moving with high velocity. Nonlinear characteristics of water speed and generator model in hydrokinetic energy conversion systems require an optimal controller for achieving optimal performance and high efficiency of the system. Here, the field oriented control method is proposed to set the PI controllers which their coefficients are optimized based on Biogeography- Based Optimization technique (BBO). In order to use BBO to solve this problem, the problem has to be formulated as an optimization problem. Numerous simulation studies are carried out to verify the effectiveness of the proposed controller scheme. Achieved results for different patterns of water speed changes in time domain show the capability of the proposed control.

Ibrahim, D. K., E. E. - D. A. El-Zahab, and A. Galal Ahmed, "Comprehensive Fault Location Scheme for Power Transmission lines", 16th International Middle East Power Systems Conference, MEPCON 2014, 2014. Abstract

A comprehensive two-terminal impedance based fault location scheme is presented in this paper which takes into account the distributed parameter line model. The scheme utilizes unsynchronized measurements of voltages and currents from the two ends of a line. The synchronization angle is calculated using symmetrical components transformation theory. The proposed scheme integrates several fault location algorithms. In one of them, Takagi method is used taking into account the effect of distributed capacitance when the communication link between sending end and receiving end fails.
Another algorithm is embedded in the proposed scheme to accurately locate ground and phase nonlinear high impedance faults using zero and negative sequence currents gathered from the two terminals within a maximum time of 2 cycles. The proposed fault-location scheme has been thoroughly tested using ATP versatile simulations of faults on transmission lines. The presented evaluation shows the validity of the developed fault-location scheme and its accepted accuracy.

Mohamed Sharaf, H., H. H. Zeineldin, D. K. Ibrahim, and E. E. L. - D. A. EL-Zahab, "Directional Inverse Time Overcurrent Relay for Meshed Distribution Systems with Distributed Generation with Additional Continuous Relay Settings", 12th International Conference on Developments in Power System Protection, 31 March - 3 April 2014 Copenhagen., Copenhagen, IET, 2014. Abstract

Coordination between inverse time overcurrent relays within meshed systems are achieved by adjusting two relay settings; pick up current and time multiplier settings. The operating time of these relays is also a function of two additional constants; one represents the constant for relay characteristics and the other one represents the inverse time type. For typical relays, each of these two constants has four definite values and choosing between them indicates the selected relay operating curve: either standard inverse, very inverse, extremely inverse or long time standby earth fault time-current relay characteristics. In this paper, a coordination strategy, that takes advantage of the available capabilities in microprocessor based relays, is proposed by considering the two relay characteristic constants as continuous variable settings that can be adjusted in addition to the conventional pickup current and Time Dial Setting (TDS). The protection coordination problem is formulated as a nonlinear programming problem where the main objective is to minimize the overall time of operation of relays taking into account protection coordination constraints. The proposed approach is applied to the IEEE 14 bus system and is compared with the conventional two setting relay.