Publications

Export 16 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
Abdelbari, M. A., A. A. El-Gazar, A. A. Abdelbary, A. H. Elshafeey, and S. Mosallam, "Investigating the potential of novasomes in improving the trans-tympanic delivery of niflumic acid for effective treatment of acute otitis media", Journal of Drug Delivery Science and Technology, vol. 98: Editions de Sante, 2024. AbstractWebsite

{Acute otitis media (AOM) is an infection that occurs in the middle ear and may cause complications and affect quality of life. The study focused on the preparation of niflumic acid (NA) loaded novasomes for the efficient treatment of AOM through trans-tympanic drug delivery. NA loaded novasomes were formulated using Span 60 with oleic acid or lauric acid as a free fatty acid (FFA). Novasomes were prepared via ethanol injection technique using D-optimal design to evaluate the influence of 3 independent variables on the novasomes’ characteristics which are: entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP), and identify the best formula for additional investigations. The best formula determined was (N6) which contains 50 mg Span 60 and 50 mg oleic acid used as FFA. N6 exhibited EE% = 92.96 ± 0.37 %

2023
Abdelbari, M. A., A. A. El-Gazar, A. A. Abdelbary, A. H. Elshafeey, and S. Mosallam, "Brij® integrated bilosomes for improving the transdermal delivery of niflumic acid for effective treatment of osteoarthritis: In vitro characterization, ex vivo permeability assessment, and in vivo study", International Journal of Pharmaceutics, vol. 640, 2023. AbstractWebsite

Bilosomes are innovative vesicular carriers containing bile salt with a non-ionic surfactant. Being highly flexible, bilosomes can squeeze themselves through the skin carrying the drug to the action site and improving its skin penetration. The objective of this research was to encapsulate niflumic acid (NA), a non-steroidal anti-inflammatory drug into Brij® integrated bilosomes (BIBs) for effective treatment of osteoarthritis through transdermal delivery. BIBs were formulated using 100 mg of Span 20 with different amounts of sodium cholate (NaC), sodium taurocholate (NaTC), or sodium glycocholate (NaGC) as bile salt, with the addition of 5 mg of Brij-93 or Brij-35. BIBs were prepared utilizing ethanol injection method with the application of (31 × 22) complete factorial design using Design-Expert® software. The optimal BIBs formulation determined was (B5) which contains 5 mg of NaTC used as bile salt and 5 mg of Brij-93. B5 exhibited entrapment efficiency% = 95.21 ± 0.00%, particle size = 373.05 ± 0.07 nm, polydispersity index = 0.27 ± 0.01, and zeta potential = –32.00 ± 0.00 mV. It also had a high elasticity with a spherical shape. B5 gel displayed a sustained release profile with a significantly 2.3 folds’ higher drug permeation percent across rat skin than that permeated from NA gel. Moreover, in vivo anti-osteoarthritic and histopathological studies assured the efficacy and safety of B5 gel and its superiority over NA gel. Generally, the outcomes confirmed the great efficacy of NA loaded BIBs for the topical treatment of osteoarthritis. © 2023 Elsevier B.V.

Abdelbari, M. A., A. H. Elshafeey, A. A. Abdelbary, and S. Mosallam, "Implementing Nanovesicles for Boosting the Skin Permeation of Non-steroidal Anti-inflammatory Drugs", AAPS PharmSciTech, vol. 24, no. 7, 2023. AbstractWebsite

The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased lately around the world, as they are considered essential and popular drugs for effective reduction of pain and inflammation. They have analgesic, antipyretic, and anti-inflammatory activities; also, it was reported recently that they protect against various critical disorders like heart attacks and cancer. However, oral use of NSAIDs may cause several pulmonary, gastrointestinal, hepatic, cardiovascular, cerebral, and renal complications. Therefore, topical NSAIDs were recommended as a substitute to oral NSAIDs for the treatment of inflammation and pain. Still, the skin permeation of NSAIDs is considered a challenge, as the skin have an effective barrier function. Therefore, this review investigates various advanced vesicular nanocarriers and their applications through the skin, to augment the topical delivery of NSAIDs through stratum corneum over the conventional systems, enhance their effectiveness, and reduce the unwanted side effects. These innovative systems can manage bioavailability, solubility, stability, safety, and efficacy issues present in conventional systems. © 2023, The Author(s).

2022
Abdallah, I. A., S. F. Hammad, A. Bedair, A. H. Elshafeey, and F. R. Mansour, "Determination of favipiravir in human plasma using homogeneous liquid-liquid microextraction followed by HPLC/UV", Bioanalysis, vol. 14, no. 4: Newlands Press Ltd, pp. 205 – 216, 2022. AbstractWebsite

Background: Favipiravir is an antiviral drug that was recently approved for the management of COVID-19 infection. Aim: This work aimed to develop a new method, using sugaring-out induced homogeneous liquid-liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Materials & methods: The optimum extraction conditions were attained using 500 μl of tetrahydrofuran as an extractant and 1400 mg of fructose as a phase-separating agent. Results: The developed method was validated according to the US FDA bioanalytical guidelines and was found linear in the range of 25-80,000 ng/ml with a correlation coefficient of 0.999. Conclusion: These results showed that the developed method was simple, easy, valid and adequately sensitive for determination of favipiravir in plasma for bioequivalence studies. © 2022 Newlands Press.

Abdallah, I. A., S. F. Hammad, A. Bedair, M. A. Abdelaziz, N. D. Danielson, A. H. Elshafeey, and F. R. Mansour, "A gadolinium-based magnetic ionic liquid for supramolecular dispersive liquid–liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma", Biomedical Chromatography, vol. 36, no. 6: John Wiley and Sons Ltd, 2022. AbstractWebsite

Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid–liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 μl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma. © 2022 John Wiley & Sons, Ltd.

2021
Mosallam, S., N. M. Sheta, A. H. Elshafeey, and A. A. Abdelbary, "Fabrication of Highly Deformable Bilosomes for Enhancing the Topical Delivery of Terconazole: In Vitro Characterization, Microbiological Evaluation, and In Vivo Skin Deposition Study", AAPS PharmSciTech, vol. 22, no. 2, pp. 74, February, 2021. AbstractWebsite

The current study aimed to load terconazole (TCZ), an antifungal agent with low permeability characteristics, into highly deformable bilosomes (HBs) for augmenting its topical delivery. HBs contain edge activator in addition to the constituents of traditional bilosomes (Span 60, cholesterol, and bile salts). More elasticity is provided to the membrane of vesicles by the existence of edge activator and is expected to increase the topical permeation of TCZ. HBs were formulated using ethanol injection technique based on 2<sup>4</sup> complete factorial design to inspect the impact of various formulation variables (bile salt type and amount, edge activator type, and sonication time) on HBs characteristics (entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP)). The optimum formula (HB14) was decided based on Design-Expert<sup>®</sup> software and was utilized for further explorations. HB14 exhibited EE% = 84.25 ± 0.49%, PS = 400.10 ± 1.69 nm, PDI = 0.23 ± 0.01, and ZP = - 56.20 ± 0.00 mV. HB14 showed spherical vesicles with higher deformability index (9.94 ± 1.91 g) compared to traditional bilosomal formula (3.49 ± 0.49 g). Furthermore, HB14 showed superior inhibition of Candida albicans growth relative to TCZ suspension using XTT (2,3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay. Moreover, in vivo skin deposition studies revealed superior TCZ deposition inside the skin from HB14 compared to traditional bilosomal formula and TCZ suspension. Moreover, histopathological examination in rats assured the safety of HB14 for topical use. Concisely, the obtained outcomes confirmed the pronounced efficacy of HBs for topical delivery of TCZ.

Elshafeey, A. H., A. A. Abdelbary, S. Mosallam, M. H. Ragaie, and N. H. Moftah, "Use of Novasomes as a Vesicular Carrier for Improving the Topical Delivery of Terconazole: In Vitro Characterization, In Vivo Assessment and Exploratory Clinical Experimentation", International Journal of Nanomedicine, vol. 16, pp. 119-132, 2021. Use of Novasomes as a Vesicular Carrier .pdf
2020
El-Nabarawi, M. A., A. H. Elshafeey, D. M. Mahmoud, and A. M. El Sisi, Fabrication, optimization, and in vitro/in vivo evaluation of diclofenac epolamine flash tablet, , vol. 10, issue 5, pp. 1314 - 1326, 2020. AbstractWebsite

The objective of this work was to design a diclofenac epolamine (DE) flash tablets (FTs) intended to dissolve in the mouth saliva, thereby improving the DE bioavailability and reducing its first-pass liver metabolism. Design-Expert software was used to build a 31.22 full factorial design (12 runs). FTs were fabricated using lyophilization process. The dissolution response was selected to pick the optimized run. The results indicate that the optimized run (R1) showed the fastest drug dissolution (total dissolution in 12 min). The predicted run (Rp) showed a desirability of about 0.93. Differential scanning calorimetry(DSC) analysis results showed a decrease in the drug melting point of the R1 formulation. Fourier–transform infrared spectroscopy (FTIR) showed the compatibility of the drug with other components of formulation, X-ray powder diffraction (XRPD) analysis showed the evolution of the drug physical state from a crystalline to an amorphous form and scanning electron microscopy(SEM) divugled the disappearance of drug crystals in gelatin strands. The results of the pharmacokinetic study performed in 6 human volunteers evidenced an increase in the maximum DE concentration in plasma and, consequently, an increased bioavailability of the FT formulation as compared with a reference formulation(Fr). Concisely, the developed FTs (R1) showed promising results which could be able to enhance oral bioavailability, reduce the therapeutic dose of the drug, and abate of the complications accompanied with conventional dosage forms.

Joseph Naguib, M., A. Moustafa Kamel, A. Thabet Negmeldin, A. H. Elshafeey, and I. Elsayed, "Molecular docking and statistical optimization of taurocholate-stabilized galactose anchored bilosomes for the enhancement of sofosbuvir absorption and hepatic relative targeting efficiency", Drug Delivery, vol. 27, no. 1, pp. 996-1009, 2020. AbstractWebsite
n/a
2017
Abdelrahman, F. E., I. Elsayed, M. K. Gad, A. H. Elshafeey, and M. I. Mohamed, "{Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone}", {INTERNATIONAL JOURNAL OF PHARMACEUTICS}, vol. {530}, no. {1-2}, pp. {1-11}, {SEP 15}, 2017. Abstract

{Transnasal brain drug targeting could ensure better drug delivery to the brain through the olfactory pathway. Risperidone bioavailability is 66% in extensive metabolizers and 82% in slow metabolizers. The aim of this study is to investigate the ability of the nanovesicular spanlastics to effectively deliver risperidone through the nasal route to the brain and increase its bioavailability. Spanlastics formulae, composed of span and polyvinyl alcohol, were designed based on central composite statistical design. The planned formulae were prepared using ethanol injection method. The prepared formulae were characterized by testing their particle size, polydispersity index, zeta potential and encapsulation efficiency. The optimized formula having the lowest particle size, polydispersity index, the highest zeta potential and encapsulation efficiency was subjected to further investigations including characterization of its rheological properties, elasticity, transmission electron microscopy, in vitro diffusion, ex vivo permeation, histopathology and in vivo biodistribution. The optimized formula was composed of 5 mg/mL span and 30 mg/mL polyvinyl alcohol. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the used control regarding the brain targeting efficiency and the drug transport percentage (2.16 and 1.43 folds increase, respectively). The study introduced a successful and promising formula to directly and effectively carry the drug from nose to brain. (C) 2017 Elsevier B.V. All rights reserved.}

Eissa, I. H., H. Mohammad, O. A. Qassem, W. Younis, T. M. Abdelghany, A. Elshafeey, M. M. Abd Rabo Moustafa, M. N. Seleem, and A. S. Mayhoub, Diphenylurea derivatives for combating methicillin- and vancomycin-resistant Staphylococcus aureus, , vol. 130, issue Supplement C, pp. 73 - 85, 2017. AbstractWebsite

AbstractA new class of diphenylurea was identified as a novel antibacterial scaffold with an antibacterial spectrum that includes highly resistant staphylococcal isolates, namely methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA & VRSA). Starting with a lead compound 3 that carries an aminoguanidine functionality from one side and a n-butyl moiety on the other ring, several analogues were prepared. Considering the pharmacokinetic parameters as a key factor in structural optimization, the structure-activity-relationships (SARs) at the lipophilic side chain were rigorously examined leading to the discovery of the cycloheptyloxyl analogue 21n as a potential drug-candidate. This compound has several notable advantages over vancomycin and linezolid including rapid killing kinetics against MRSA and the ability to target and reduce the burden of MRSA harboring inside immune cells (macrophages). Furthermore, the potent anti-MRSA activity of 21n was confirmed in vivo using a Caenorhabditis elegans animal model. The present study provides a foundation for further development of diphenylurea compounds as potential therapeutic agents to address the burgeoning challenge of bacterial resistance to antibiotics.

Morsi, N. M., G. A. Abdelbary, A. H. Elshafeey, and A. M. Ahmed, "Engineering of a novel optimized platform for sublingual delivery with novel characterization tools: in vitro evaluation and in vivo pharmacokinetics study in human", Drug Delivery, vol. 24, issue 1: Taylor & Francis, pp. 918 - 931, 2017. AbstractWebsite

AbstractThe aim of this work was to develop a novel and more efficient platform for sublingual drug delivery using mosapride citrate (MSP) as a model drug. The engineering of this delivery system had two stages, the first stage was tuning of MSP physicochemical properties by complexation with pure phosphatidylcholine or phosphatidylinositol enriched soybean lecithin to form MSP-phospholipid complex (MSP-PLCP). Changes in physicochemical properties were assessed and the optimum MSP-PLCP formula was then used for formulation into a flushing resistant platform using two mucoadhesive polymers; sodium alginates and sodium carboxymethylcellulose at different concentrations. Design of experiment approach was used to characterize and optimize the formulated flushing resistant platform. The optimized formulation was then used in a comparative pharmacokinetics study with the market formulation in human volunteers. Results showed a marked change in MSP physicochemical properties of MSP-PLCP compared to MSP. Addition of mucoadhesive polymers to flushing resistant platform at an optimum concentration balanced between desired mucoadhesive properties and a reasonable drug release rate. The optimized formulation showed significantly a superior bioavailability in humans when compared to the market sublingual product. Finally, the novel developed sublingual flushing resistant platform offers a very promising and efficient tool to extend the use of sublingual route and widen its applications.

2016
Seleem, M. A., A. M. Disouky, H. Mohammad, T. M. Abdelghany, A. S. Mancy, S. A. Bayoumi, A. Elshafeey, A. El-Morsy, M. N. Seleem, and A. S. Mayhoub, "Second-Generation Phenylthiazole Antibiotics with Enhanced Pharmacokinetic Properties", Journal of Medicinal Chemistry, vol. 59, no. 10, pp. 4900-4912, 2016. AbstractWebsite

A series of second-generation analogues for 2-(1-(2-(4-butylphenyl)-4-methylthiazol-5-yl)ethylidene)aminoguanidine (1) have been synthesized and tested against methicillin-resistant Staphylococcus aureus (MRSA). The compounds were designed with the objective of improving pharmacokinetic properties. This main aim has been accomplished by replacing the rapidly hydrolyzable Schiff-base moiety of first-generation members with a cyclic, unhydrolyzable pyrimidine ring. The hydrazide-containing analogue 17 was identified as the most potent analogue constructed thus far. The corresponding amine 8 was 8 times less active. Finally, incorporating the nitrogenous side chain within an aromatic system completely abolished the antibacterial character. Replacement of the n-butyl group with cyclic bioisosteres revealed cyclohexenyl analogue 29, which showed significant improvement in in vitro anti-MRSA potency. Increasing or decreasing the ring size deteriorated the antibacterial activity. Compound 17 demonstrated a superior in vitro and in vivo pharmacokinetic profile, providing compelling evidence that this particular analogue is a good drug candidate worthy of further analysis.

2010
Awad, G. A. S. a, N. D. a Mortada, A. O. a Kamel, and A. H. b Elshafeey, "Marine derived polysaccharides as drug delivery systems", Polysaccharides: Development, Properties and Applications, pp. 17-62, 2010. AbstractWebsite

In this chapter three marine polysaccharides have been reviewed: chitosan, alginate and carrageenan. Their origins, structures, blending with each other and with other polymers and structure modifications were discussed, with special emphasis on their applications in various pharmaceutical fields, biotechnology, tissue engineering and gene delivery if ever used. © 2010 by Nova Science Publishers, Inc. All rights reserved.

2009
Elshafeey, A. H., E. R. Bendas, and O. H. Mohamed, "Intranasal Microemulsion of Sildenafil Citrate: In Vitro Evaluation and In Vivo Pharmacokinetic Study in Rabbits", AAPS PharmSciTech, vol. 10, issue 2, pp. 361-367, 2009. Abstract

The purpose of the present study was to prepare intranasal delivery system of sildenafil citrate and estimate its relative bioavailability after nasal administration in rabbits to attain rapid onset of action with good efficacy at lower doses. Sildenafil citrate saturated solubility was determined in different solvents, cosolvents, and microemulsion systems. For nasal application, sildenafil citrate was formulated in two different systems: the first was a cosolvent system (S3) of benzyl alcohol/ethanol/water/Transcutol/taurodeoxy cholate/Tween 20 (0.5:16.8:47.7:15.9:1:18.1% w/w). The second was a microemulsion system (ME6) containing Oleic acid: Labrasol/Transcutol/water (8.33:33.3:16.66:41.66% w/w). The prepared systems were characterized in relation to their clarity, particle size, viscosity, pH, and nasal ciliotoxicity. In vivo pharmacokinetic performance of the selected system ME6 (with no nasal ciliotoxicity) was evaluated in a group of six rabbits in a randomized crossover study and compared to the marketed oral tablets. The targeted solubility (>20 mg/ml) of sildenafil citrate was achieved with cosolvent systems S1, S3, and S5 and with microemulsion systems ME3–ME6. The saturated solubility of sildenafil citrate in cosolvent system S3 and microemulsion system ME6 were 22.98 ± 1.26 and 23.79 ± 1.16 mg/ml, respectively. Microemulsion formulation ME6 showed shorter t max (0.75 h) and higher AUC(0-∞) (1,412.42 ng h/ml) compared to the oral tablets which showed t max equals 1.25 h and AUC(0-∞) of 1,251.14 ng h/ml after administration to rabbits at dose level of 5 mg/kg. The relative bioavailability was 112.89%. In conclusion, the nasal absorption of sildenafil citrate microemulsion was found to be fast, indicating the potential of nasal delivery instead of the conventional oral administration of such drug.

Elshafeey, A. H., E. R. Bendas, and O. H. Mohamed, "Intranasal microemulsion of sildenafil citrate: In vitro evaluation and in vivo pharmacokinetic study in rabbits", AAPS PharmSciTech, vol. 10, no. 2, pp. 361-367, 2009. AbstractWebsite

The purpose of the present study was to prepare intranasal delivery system of sildenafil citrate and estimate its relative bioavailability after nasal administration in rabbits to attain rapid onset of action with good efficacy at lower doses. Sildenafil citrate saturated solubility was determined in different solvents, cosolvents, and microemulsion systems. For nasal application, sildenafil citrate was formulated in two different systems: the first was a cosolvent system (S3) of benzyl alcohol/ethanol/water/Transcutol/taurodeoxy cholate/Tween 20 (0.5:16.8:47.7:15.9:1:18.1% w/w). The second was a microemulsion system (ME6) containing Oleic acid: Labrasol/Transcutol/water (8.33:33.3:16.66:41.66% w/w). The prepared systems were characterized in relation to their clarity, particle size, viscosity, pH, and nasal ciliotoxicity. In vivo pharmacokinetic performance of the selected system ME6 (with no nasal ciliotoxicity) was evaluated in a group of six rabbits in a randomized crossover study and compared to the marketed oral tablets. The targeted solubility (>20 mg/ml) of sildenafil citrate was achieved with cosolvent systems S1, S3, and S5 and with microemulsion systems ME3-ME6. The saturated solubility of sildenafil citrate in cosolvent system S3 and microemulsion system ME6 were 22.98 ± 1.26 and 23.79 ± 1.16 mg/ml, respectively. Microemulsion formulation ME6 showed shorter tmax (0.75 h) and higher AUC(0-∞) (1,412.42 ng h/ml) compared to the oral tablets which showed tmax equals 1.25 h and AUC(0-∞) of 1,251.14 ng h/ml after administration to rabbits at dose level of 5 mg/kg. The relative bioavailability was 112.89%. In conclusion, the nasal absorption of sildenafil citrate microemulsion was found to be fast, indicating the potential of nasal delivery instead of the conventional oral administration of such drug. © American Association of Pharmaceutical Scientists 2009.

Tourism