Publications

Export 30 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
El-Dahmy, R. M., A. H. Elshafeey, and Y. Ahmed El-Feky, "Fabrication, optimization, and evaluation of lyophilized lacidipine-loaded fatty-based nanovesicles as orally fast disintegrating sponge delivery system", International Journal of Pharmaceutics, vol. 655: Elsevier B.V., 2024. AbstractWebsite

Lacidipine (LCD) is a potent antihypertensive agent. Fatty-based nanovesicles (FNVs) were designed to improve LCD low solubility and bioavailability. LCD-FNVs were formulated according to different proportions of cetyl alcohol, cremophor®RH40, and oleic acid adopting Box-Behnken Design. The optimized LCD-FNVs, composed of cetyl alcohol 48.4 mg, cremophor®RH40 120 mg, and oleic acid 40 mg, showed minimum vesicle size (124.8 nm), maximum entrapment efficiency % (91.04 %) and zeta potential (-36.3 mV). The optimized FNVs were then used to formulate the lyophilized orally fast-disintegrating sponge (LY-OFDS). The LY-OFDS had a very short disintegration time (58 sec), remarkably high % drug release (100 % after 15 mins), and increased the drug transbuccal permeation by over 9.5-fold compared to the drug suspension. In-vivo evaluation of antihypertensive activity in rats showed that the LY-OFDS reduced blood pressure immediately after 5 min and reached normal blood pressure 4.5-fold faster than the marketed oral tablets. In the In-vivo pharmacokinetic study in rabbits, the LY-OFDS showed 4.7-fold higher bioavailability compared with the marketed oral tablet. In conclusion, the LY-OFDS loaded with LCD-FNVs is a safe, and non-invasive approach that can deliver LCD effectively to the blood circulation via the buccal mucosa giving superior immediate capabilities of lowering high blood pressure and increasing the drug bioavailability. © 2024 Elsevier B.V.

Abdelbari, M. A., A. A. El-Gazar, A. A. Abdelbary, A. H. Elshafeey, and S. Mosallam, "Investigating the potential of novasomes in improving the trans-tympanic delivery of niflumic acid for effective treatment of acute otitis media", Journal of Drug Delivery Science and Technology, vol. 98: Editions de Sante, 2024. AbstractWebsite

{Acute otitis media (AOM) is an infection that occurs in the middle ear and may cause complications and affect quality of life. The study focused on the preparation of niflumic acid (NA) loaded novasomes for the efficient treatment of AOM through trans-tympanic drug delivery. NA loaded novasomes were formulated using Span 60 with oleic acid or lauric acid as a free fatty acid (FFA). Novasomes were prepared via ethanol injection technique using D-optimal design to evaluate the influence of 3 independent variables on the novasomes’ characteristics which are: entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP), and identify the best formula for additional investigations. The best formula determined was (N6) which contains 50 mg Span 60 and 50 mg oleic acid used as FFA. N6 exhibited EE% = 92.96 ± 0.37 %

Said, M., I. Elsayed, A. A. Aboelwafa, A. H. Elshafeey, and M. Hassan, "Ocular Mucoadhesive and Biodegradable Sponge-Like Inserts for the Sustained and Controlled Delivery of Voriconazole; Preparation, D-optimal Factorial Optimization and in-vivo Evaluation", Journal of Pharmaceutical Sciences, vol. 113, no. 4, pp. 961 – 973, 2024. AbstractWebsite

The aim of this study was to formulate and optimize by statistical means mucoadhesive and biodegradable sponge-like inserts loaded with voriconazole (VCZ) which increases the contact time of the drug with the eye and sustain its release from the formula in a controlled manner. This avoids the pulsed effect reported for the drug suspension and results in reducing the number of drug instillations in the eye with the result of enhancing the patient compliance. Also, the sponge like nature of the insert reduces the foreign body sensation caused by other ocular solid dosage forms. They were prepared using casting/freeze-drying technique using five polymers namely high molecular weight chitosan (CH), sodium alginate (AL), sodium carboxy methyl cellulose (CMC), gellan gum (GG) and xanthan gum (XG). The prepared inserts were subjected to evaluations of their visual appearance, weight variation, drug content, surface pH, in-vitro release (percent drug released after 1h (Q1 (%)), mean dissolution time (MDT) and dissolution efficiency (DE)) in addition to kinetic analysis of the release data, water uptake, mucoadhesion and rheology of the forming plain polymer solution at the maximum rate of shear. The independent variables of the D-optimal factorial design were the polymer type and concentration while Q1 (%), MDT, DE, % water uptake after 15 minutes and rheology at the maximum rate of shear were chosen as dependant variables. The performed optimization process using design expert software showed an optimum formula consisting of 2 % GG. It showed slow release behavior compared to the drug suspension. FTIR and DSC studies showed that there is no interaction between VCZ and GG. The optimum formula has good in-vitro mucoadhesive properties and pH in the safe ocular range. Moreover, it showed promising in-vivo results of rapid hydration and gelling in addition to good mucoadhesive behavior when instilled in the eye, high ocular safety and biocompatibility, sustained antifungal activity in comparison to the drug suspension and finally biodegradation. So, it may be taken into consideration as an outstanding carrier for the ocular delivery of VCZ. © 2023

Azrak, Z. A. T., M. S. Taha, J. Jagal, A. Elsherbeny, H. Bayraktutan, M. H. H. AbouGhaly, A. H. Elshafeey, K. Greish, and M. Haider, "Optimized mucoadhesive niosomal carriers for intranasal delivery of carvedilol: A quality by design approach", International Journal of Pharmaceutics, vol. 654, 2024. AbstractWebsite

Carvedilol (CV), a β-blocker essential for treating cardiovascular diseases, faces bioavailability challenges due to poor water solubility and first-pass metabolism. This study developed and optimized chitosan (CS)-coated niosomes loaded with CV (CS/CV-NS) for intranasal (IN) delivery, aiming to enhance systemic bioavailability. Utilizing a Quality-by-Design (QbD) approach, the study investigated the effects of formulation variables, such as surfactant type, surfactant-to-cholesterol (CHOL) ratio, and CS concentration, on CS/CV-NS properties. The focus was to optimize specific characteristics including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and mucin binding efficiency (MBE%). The optimal formulation (Opt CS/CV-NS), achieved with a surfactant: CHOL ratio of 0.918 and a CS concentration of 0.062 g/100 mL, using Span 60 as the surfactant, exhibited a PS of 305 nm, PDI of 0.36, ZP of + 33 mV, EE% of 63 %, and MBE% of 57 %. Opt CS/CV-NS was characterized for its morphological and physicochemical properties, evaluated for stability under different storage conditions, and assessed for in vitro drug release profile. Opt CS/CV-NS demonstrated a 1.7-fold and 4.8-fold increase in in vitro CV release after 24 h, compared to uncoated CV-loaded niosomes (Opt CV-NS) and free CV, respectively. In vivo pharmacokinetic (PK) study, using a rat model, demonstrated that Opt CS/CV-NS achieved faster Tmax and higher Cmax compared to free CV suspension indicating enhanced absorption rate. Additionally, Opt CV-NS showed a 1.68-fold higher bioavailability compared to the control. These results underscore the potential of niosomal formulations in enhancing IN delivery of CV, offering an effective strategy for improving drug bioavailability and therapeutic efficacy. © 2024 Elsevier B.V.

2023
Abdelbari, M. A., A. A. El-Gazar, A. A. Abdelbary, A. H. Elshafeey, and S. Mosallam, "Brij® integrated bilosomes for improving the transdermal delivery of niflumic acid for effective treatment of osteoarthritis: In vitro characterization, ex vivo permeability assessment, and in vivo study", International Journal of Pharmaceutics, vol. 640, 2023. AbstractWebsite

Bilosomes are innovative vesicular carriers containing bile salt with a non-ionic surfactant. Being highly flexible, bilosomes can squeeze themselves through the skin carrying the drug to the action site and improving its skin penetration. The objective of this research was to encapsulate niflumic acid (NA), a non-steroidal anti-inflammatory drug into Brij® integrated bilosomes (BIBs) for effective treatment of osteoarthritis through transdermal delivery. BIBs were formulated using 100 mg of Span 20 with different amounts of sodium cholate (NaC), sodium taurocholate (NaTC), or sodium glycocholate (NaGC) as bile salt, with the addition of 5 mg of Brij-93 or Brij-35. BIBs were prepared utilizing ethanol injection method with the application of (31 × 22) complete factorial design using Design-Expert® software. The optimal BIBs formulation determined was (B5) which contains 5 mg of NaTC used as bile salt and 5 mg of Brij-93. B5 exhibited entrapment efficiency% = 95.21 ± 0.00%, particle size = 373.05 ± 0.07 nm, polydispersity index = 0.27 ± 0.01, and zeta potential = –32.00 ± 0.00 mV. It also had a high elasticity with a spherical shape. B5 gel displayed a sustained release profile with a significantly 2.3 folds’ higher drug permeation percent across rat skin than that permeated from NA gel. Moreover, in vivo anti-osteoarthritic and histopathological studies assured the efficacy and safety of B5 gel and its superiority over NA gel. Generally, the outcomes confirmed the great efficacy of NA loaded BIBs for the topical treatment of osteoarthritis. © 2023 Elsevier B.V.

Abdelbari, M. A., A. H. Elshafeey, A. A. Abdelbary, and S. Mosallam, "Implementing Nanovesicles for Boosting the Skin Permeation of Non-steroidal Anti-inflammatory Drugs", AAPS PharmSciTech, vol. 24, no. 7, 2023. AbstractWebsite

The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased lately around the world, as they are considered essential and popular drugs for effective reduction of pain and inflammation. They have analgesic, antipyretic, and anti-inflammatory activities; also, it was reported recently that they protect against various critical disorders like heart attacks and cancer. However, oral use of NSAIDs may cause several pulmonary, gastrointestinal, hepatic, cardiovascular, cerebral, and renal complications. Therefore, topical NSAIDs were recommended as a substitute to oral NSAIDs for the treatment of inflammation and pain. Still, the skin permeation of NSAIDs is considered a challenge, as the skin have an effective barrier function. Therefore, this review investigates various advanced vesicular nanocarriers and their applications through the skin, to augment the topical delivery of NSAIDs through stratum corneum over the conventional systems, enhance their effectiveness, and reduce the unwanted side effects. These innovative systems can manage bioavailability, solubility, stability, safety, and efficacy issues present in conventional systems. © 2023, The Author(s).

2022
Abdallah, I. A., S. F. Hammad, A. Bedair, A. H. Elshafeey, and F. R. Mansour, "Determination of favipiravir in human plasma using homogeneous liquid-liquid microextraction followed by HPLC/UV", Bioanalysis, vol. 14, no. 4: Newlands Press Ltd, pp. 205 – 216, 2022. AbstractWebsite

Background: Favipiravir is an antiviral drug that was recently approved for the management of COVID-19 infection. Aim: This work aimed to develop a new method, using sugaring-out induced homogeneous liquid-liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Materials & methods: The optimum extraction conditions were attained using 500 μl of tetrahydrofuran as an extractant and 1400 mg of fructose as a phase-separating agent. Results: The developed method was validated according to the US FDA bioanalytical guidelines and was found linear in the range of 25-80,000 ng/ml with a correlation coefficient of 0.999. Conclusion: These results showed that the developed method was simple, easy, valid and adequately sensitive for determination of favipiravir in plasma for bioequivalence studies. © 2022 Newlands Press.

Abdallah, I. A., S. F. Hammad, A. Bedair, M. A. Abdelaziz, N. D. Danielson, A. H. Elshafeey, and F. R. Mansour, "A gadolinium-based magnetic ionic liquid for supramolecular dispersive liquid–liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma", Biomedical Chromatography, vol. 36, no. 6: John Wiley and Sons Ltd, 2022. AbstractWebsite

Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid–liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 μl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma. © 2022 John Wiley & Sons, Ltd.

Hassan, H. A. F. M., A. I. Ali, E. M. ElDesawy, and A. H. Elshafeey, "Pharmacokinetic and Pharmacodynamic Evaluation of Gemifloxacin Chitosan Nanoparticles As an Antibacterial Ocular Dosage Form", Journal of Pharmaceutical Sciences, vol. 111, no. 5: Elsevier B.V., pp. 1497 – 1508, 2022. AbstractWebsite

Ocular infections are classified into superficial keratitis, conjunctivitis or deep infections such as corneal abscesses and blepharitis. Herein, we focused on the development of formulation approaches that could prolong the residence time of gemifloxacin (GM) and enhance its corneal penetration to facilitate GM effects both superficially and at the deep tissues. Ionic gelation method was used to prepare eight forms of GM nanoparticles (NPs) formulated from chitosan polymer using sodium tripolyphosphate (TPP)-induced precipitation method. Differential scanning colorimetry (DSC) and X-ray diffraction (XRD) demonstrated the interaction between the chitosan and GM. Particle size, entrapment efficiency and cumulative in vitro release were used to select the optimal formula using Design Expert® software. The mean diameter of the selected NPs was 158. 4 nm. The average entrapment efficiency and cumulative release exhibited by the formulated NPs were 46.6% and 74.9%, respectively. Pharmacokinetics studies carried out on rabbits revealed that the ocularly-administered NPs significantly increased the loaded GM concentration in the tear and aqueous humour samples that suggested enhancement of precorneal retention and transcorneal permeation, respectively. Furthermore, ocular pharmacodynamic studies conducted on rabbits following ocular infection with Staphylococcus aureus or Pseudomonas aeruginosa showed that the administered NPs augmented the antibacterial activity of the delivered GM. This was demonstrated via the histopathological examination of the dissected corneas that showed preserved histological features and reduced bacterial keratitis on using the GM NPs rather than GM solution. Moreover, the GM NPs-treated corneas showed lower viable bacterial counts than the GM solution-treated corneas. Accordingly, our study illustrated the capability of the chitosan NPs to promote the antibacterial activity of GM against eye infections via ocular administration. © 2021 American Pharmacists Association

2021
Mosallam, S., N. M. Sheta, A. H. Elshafeey, and A. A. Abdelbary, "Fabrication of Highly Deformable Bilosomes for Enhancing the Topical Delivery of Terconazole: In Vitro Characterization, Microbiological Evaluation, and In Vivo Skin Deposition Study", AAPS PharmSciTech, vol. 22, no. 2, pp. 74, February, 2021. AbstractWebsite

The current study aimed to load terconazole (TCZ), an antifungal agent with low permeability characteristics, into highly deformable bilosomes (HBs) for augmenting its topical delivery. HBs contain edge activator in addition to the constituents of traditional bilosomes (Span 60, cholesterol, and bile salts). More elasticity is provided to the membrane of vesicles by the existence of edge activator and is expected to increase the topical permeation of TCZ. HBs were formulated using ethanol injection technique based on 2<sup>4</sup> complete factorial design to inspect the impact of various formulation variables (bile salt type and amount, edge activator type, and sonication time) on HBs characteristics (entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP)). The optimum formula (HB14) was decided based on Design-Expert<sup>®</sup> software and was utilized for further explorations. HB14 exhibited EE% = 84.25 ± 0.49%, PS = 400.10 ± 1.69 nm, PDI = 0.23 ± 0.01, and ZP = - 56.20 ± 0.00 mV. HB14 showed spherical vesicles with higher deformability index (9.94 ± 1.91 g) compared to traditional bilosomal formula (3.49 ± 0.49 g). Furthermore, HB14 showed superior inhibition of Candida albicans growth relative to TCZ suspension using XTT (2,3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay. Moreover, in vivo skin deposition studies revealed superior TCZ deposition inside the skin from HB14 compared to traditional bilosomal formula and TCZ suspension. Moreover, histopathological examination in rats assured the safety of HB14 for topical use. Concisely, the obtained outcomes confirmed the pronounced efficacy of HBs for topical delivery of TCZ.

Said, M., A. A. Aboelwafa, A. H. Elshafeey, and I. Elsayed, Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole, , vol. 61, pp. 102075, 2021. AbstractWebsite

This study aimed to formulate and statistically optimize cubosomal formulations loaded with voriconazole to enhance and control its ocular bioavailability. The independent variables of the employed central composite face-centered design were the percentages of monoolein and Pluronic F127. Particle size, zeta potential, drug content, entrapment efficiency and drug release parameters were adopted as dependent responses. The conducted factorial analysis resulted in an optimum formulation composed of 15% monoolein and 1.2% Pluronic F127. The optimum cubosomal formulation showed well-dispersed vesicles with a particle size of 160 nm and a relatively high drug loading (0.81%). Then, it was coated with chitosan to further enhance its precorneal residence time. The chitosan-coated formulation showed high mucoadhesive properties, in addition to being safe and biocompatible. Moreover, it showed higher Cmax, Tmax, AUC(0-8), AUC(0-∞), MRT, T1/2 and HVDt50%Cmax when compared to voriconazole suspension. It showed also higher concentration in the vitreous humor when compared to the drug suspension which indicates deeper penetration into the ocular tissue. Finally, the chitosan-coated optimum cubosomal formulation could be considered an efficient ocular nanocarrier for voriconazole.

Abdelbari, M. A., S. S. El-Mancy, A. H. Elshafeey, and A. A. Abdelbary, "Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study", International Journal of Nanomedicine, vol. 16, 2021. Abstract

{Purpose: The aim of this study was to encapsulate clotrimazole (CLT), an antifungal drug with poor water solubility characteristics, into spanlastics (SPs) to provide a controlled ocular delivery of the drug. Methods: Span 60 was used in the formulation of SPs with Tween 80, Pluronic F127, or Kolliphor RH40 as an edge activator (EA). The presence of EA offers more elasticity to the membrane of the vesicles which is expected to increase the corneal permeation of CLT. SPs were prepared using ethanol injection method applying 32 complete factorial design to study the effect of formulation variables (ratio of Span 60: EA (w/w) and type of EA) on SPs characteristics (encapsulation efficiency percent (EE%), average vesicle size (VS), polydis-persity index (PDI) and zeta potential (ZP)). Design-Expert software was used to determine the optimum formulation for further investigations. Results: The optimum formulation determined was S1, which contains 20 mg of Tween 80 used as an EA and 80 mg of Span 60. S1 exhibited EE% = 66.54 ± 7.57%

Elshafeey, A. H., A. A. Abdelbary, S. Mosallam, M. H. Ragaie, and N. H. Moftah, "Use of Novasomes as a Vesicular Carrier for Improving the Topical Delivery of Terconazole: In Vitro Characterization, In Vivo Assessment and Exploratory Clinical Experimentation", International Journal of Nanomedicine, vol. 16, pp. 119-132, 2021. Use of Novasomes as a Vesicular Carrier .pdf
2020
Elsenosy, F. M., G. A. Abdelbary, A. H. Elshafeey, I. Elsayed, and A. R. Fares, "Brain targeting of duloxetine hcl via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies", International Journal of Nanomedicine, vol. 15, pp. 9517 - 9537, 2020. AbstractWebsite
n/a
2018
Said, M., I. Elsayed, A. A. Aboelwafa, and A. H. Elshafeey, "A novel concept of overcoming the skin barrier using augmented liquid nanocrystals: Box-Behnken optimization, ex vivo and in vivo evaluation", Colloids and Surfaces B: Biointerfaces, vol. 170, pp. 258-265, 2018. AbstractWebsite
n/a
Yousry, C., M. M. Amin, A. H. Elshafeey, and O. N. El Gazayerly, "Ultrahigh verapamil-loaded controlled release polymeric beads using superamphiphobic substrate: D-optimal statistical design, in vitro and in vivo performance", Drug Delivery, vol. 25, no. 1, pp. 1448-1460, 2018. AbstractWebsite
n/a
2017
Abdelrahman, F. E., I. Elsayed, M. K. Gad, A. H. Elshafeey, and M. I. Mohamed, "{Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone}", {INTERNATIONAL JOURNAL OF PHARMACEUTICS}, vol. {530}, no. {1-2}, pp. {1-11}, {SEP 15}, 2017. Abstract

{Transnasal brain drug targeting could ensure better drug delivery to the brain through the olfactory pathway. Risperidone bioavailability is 66% in extensive metabolizers and 82% in slow metabolizers. The aim of this study is to investigate the ability of the nanovesicular spanlastics to effectively deliver risperidone through the nasal route to the brain and increase its bioavailability. Spanlastics formulae, composed of span and polyvinyl alcohol, were designed based on central composite statistical design. The planned formulae were prepared using ethanol injection method. The prepared formulae were characterized by testing their particle size, polydispersity index, zeta potential and encapsulation efficiency. The optimized formula having the lowest particle size, polydispersity index, the highest zeta potential and encapsulation efficiency was subjected to further investigations including characterization of its rheological properties, elasticity, transmission electron microscopy, in vitro diffusion, ex vivo permeation, histopathology and in vivo biodistribution. The optimized formula was composed of 5 mg/mL span and 30 mg/mL polyvinyl alcohol. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the used control regarding the brain targeting efficiency and the drug transport percentage (2.16 and 1.43 folds increase, respectively). The study introduced a successful and promising formula to directly and effectively carry the drug from nose to brain. (C) 2017 Elsevier B.V. All rights reserved.}

Eissa, I. H., H. Mohammad, O. A. Qassem, W. Younis, T. M. Abdelghany, A. Elshafeey, M. M. Abd Rabo Moustafa, M. N. Seleem, and A. S. Mayhoub, Diphenylurea derivatives for combating methicillin- and vancomycin-resistant Staphylococcus aureus, , vol. 130, issue Supplement C, pp. 73 - 85, 2017. AbstractWebsite

AbstractA new class of diphenylurea was identified as a novel antibacterial scaffold with an antibacterial spectrum that includes highly resistant staphylococcal isolates, namely methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA & VRSA). Starting with a lead compound 3 that carries an aminoguanidine functionality from one side and a n-butyl moiety on the other ring, several analogues were prepared. Considering the pharmacokinetic parameters as a key factor in structural optimization, the structure-activity-relationships (SARs) at the lipophilic side chain were rigorously examined leading to the discovery of the cycloheptyloxyl analogue 21n as a potential drug-candidate. This compound has several notable advantages over vancomycin and linezolid including rapid killing kinetics against MRSA and the ability to target and reduce the burden of MRSA harboring inside immune cells (macrophages). Furthermore, the potent anti-MRSA activity of 21n was confirmed in vivo using a Caenorhabditis elegans animal model. The present study provides a foundation for further development of diphenylurea compounds as potential therapeutic agents to address the burgeoning challenge of bacterial resistance to antibiotics.

Morsi, N. M., G. A. Abdelbary, A. H. Elshafeey, and A. M. Ahmed, "Engineering of a novel optimized platform for sublingual delivery with novel characterization tools: in vitro evaluation and in vivo pharmacokinetics study in human", Drug Delivery, vol. 24, issue 1: Taylor & Francis, pp. 918 - 931, 2017. AbstractWebsite

AbstractThe aim of this work was to develop a novel and more efficient platform for sublingual drug delivery using mosapride citrate (MSP) as a model drug. The engineering of this delivery system had two stages, the first stage was tuning of MSP physicochemical properties by complexation with pure phosphatidylcholine or phosphatidylinositol enriched soybean lecithin to form MSP-phospholipid complex (MSP-PLCP). Changes in physicochemical properties were assessed and the optimum MSP-PLCP formula was then used for formulation into a flushing resistant platform using two mucoadhesive polymers; sodium alginates and sodium carboxymethylcellulose at different concentrations. Design of experiment approach was used to characterize and optimize the formulated flushing resistant platform. The optimized formulation was then used in a comparative pharmacokinetics study with the market formulation in human volunteers. Results showed a marked change in MSP physicochemical properties of MSP-PLCP compared to MSP. Addition of mucoadhesive polymers to flushing resistant platform at an optimum concentration balanced between desired mucoadhesive properties and a reasonable drug release rate. The optimized formulation showed significantly a superior bioavailability in humans when compared to the market sublingual product. Finally, the novel developed sublingual flushing resistant platform offers a very promising and efficient tool to extend the use of sublingual route and widen its applications.

Said, M., I. Elsayed, A. A. Aboelwafa, and A. H. Elshafeey, "Transdermal agomelatine microemulsion gel: pyramidal screening, statistical optimization and in vivo bioavailability", Drug Delivery, vol. 24, no. 1: Taylor & Francis, pp. 1159-1169, 2017. AbstractWebsite

AbstractAgomelatine is a new antidepressant having very low oral drug bioavailability less than 5% due to being liable to extensive hepatic 1st pass effect. This study aimed to deliver agomelatine by transdermal route through formulation and optimization of microemulsion gel. Pyramidal screening was performed to select the most suitable ingredients combinations and then, the design expert software was utilized to optimize the microemulsion formulations. The independent variables of the employed mixture design were the percentages of capryol 90 as an oily phase (X1), Cremophor RH40 and Transcutol HP in a ratio of (1:2) as surfactant/cosurfactant mixture ‘Smix’ (X2) and water (X3). The dependent variables were globule size, optical clarity, cumulative amount permeated after 1 and 24 h, respectively (Q1 and Q24) and enhancement ratio (ER). The optimized formula was composed of 5% oil, 45% Smix and 50% water. The optimized microemulsion formula was converted into carbopol-based gel to improve its retention on the skin. It enhanced the drug permeation through rat skin with an enhancement ratio of 37.30 when compared to the drug hydrogel. The optimum ME gel formula was found to have significantly higher Cmax, AUC 0–24 h and AUC0–∞ than that of the reference agomelatine hydrogel and oral solution. This could reveal the prosperity of the optimized microemulsion gel formula to augment the transdermal bioavailability of agomelatine.

2016
Seleem, M. A., A. M. Disouky, H. Mohammad, T. M. Abdelghany, A. S. Mancy, S. A. Bayoumi, A. Elshafeey, A. El-Morsy, M. N. Seleem, and A. S. Mayhoub, "Second-Generation Phenylthiazole Antibiotics with Enhanced Pharmacokinetic Properties", Journal of Medicinal Chemistry, vol. 59, no. 10, pp. 4900-4912, 2016. AbstractWebsite

A series of second-generation analogues for 2-(1-(2-(4-butylphenyl)-4-methylthiazol-5-yl)ethylidene)aminoguanidine (1) have been synthesized and tested against methicillin-resistant Staphylococcus aureus (MRSA). The compounds were designed with the objective of improving pharmacokinetic properties. This main aim has been accomplished by replacing the rapidly hydrolyzable Schiff-base moiety of first-generation members with a cyclic, unhydrolyzable pyrimidine ring. The hydrazide-containing analogue 17 was identified as the most potent analogue constructed thus far. The corresponding amine 8 was 8 times less active. Finally, incorporating the nitrogenous side chain within an aromatic system completely abolished the antibacterial character. Replacement of the n-butyl group with cyclic bioisosteres revealed cyclohexenyl analogue 29, which showed significant improvement in in vitro anti-MRSA potency. Increasing or decreasing the ring size deteriorated the antibacterial activity. Compound 17 demonstrated a superior in vitro and in vivo pharmacokinetic profile, providing compelling evidence that this particular analogue is a good drug candidate worthy of further analysis.

2015
Abdelbary, A. A. a, I. a Elsayed, and A. H. a b Elshafeey, "Design and development of novel lipid based gastroretentive delivery system: Response surface analysis, in-vivo imaging and pharmacokinetic study", Drug Delivery, vol. 22, no. 1, pp. 37-49, 2015. AbstractWebsite

Famotidine HCl has low bioavailability (40-45%) due to its narrow absorption window and low solubility in intestinal pH. Lipids were utilized in the formulation of novel gastroretentive dosage forms to increase the availability of famotidine HCl at its absorption site. Novel non-swellable gastroretentive lipid disks (D) and swellable compression coated tablets with a lipid core (T) were prepared. Formulae were characterized by friability testing, in-vitro buoyancy, in-vitro drug release and scanning electron microscopy (SEM). Factorial designs of 22× 31 and 32 were planned for the optimization of disks and tablets, respectively, using Design-Expert® software. X-ray imaging was used for the in-vivo visualization of the selected formula in human gastrointestinal tract (GIT). Moreover, a bioavailability study was performed in healthy human volunteers using the optimized disk formula (D10). Results showed that formulae D10 (containing stearyl alcohol and polyethylene glycol in a ratio of 9:1 w/w) and T7 (containing polyethylene oxide only) had highest desirability values (0.684 and 0.842, respectively). Lipids achieved instantaneous floating and sustained the release of famotidine HCl over a prolonged period of time with significant bioavailability enhancement.

2014
Elsayed, I. a, A. A. a Abdelbary, and A. H. a b Elshafeey, "Nanosizing of a poorly soluble drug: Technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers", International Journal of Nanomedicine, vol. 9, no. 1, pp. 2943-2953, 2014. AbstractWebsite

Context: Diacerein (DCN) has low aqueous solubility (3.197 mg/L) and, consequently, low oral bioavailability (35%-56%). To increase both the solubility and dissolution rate of DCN while maintaining its crystalline nature, high pressure homogenization was used but with only a few homogenization cycles preceded by a simple bottom-up technique. Methods: The nanosuspensions of DCN were prepared using a combined bottom-up/top-down technique. Different surfactants-polyvinyl alcohol, sodium deoxycholate, and sodium dodecyl sulfate-with different concentrations were used for the stabilization of the nanosuspensions. Full factorial experimental design was employed to investigate the influence of formulation variables on nanosuspension characteristics using Design-Expert® Software. Particle size (PS), zeta potential, saturation solubility, in vitro dissolution, and drug crystallinity were studied. Moreover, the in vivo performance of the optimized formula was assessed by bioavailability determination in healthy human volunteers. Results: The concentration of surfactant had a significant effect on both the PS and polydispersity index values. The 1% surfactant concentration showed the lowest PS and polydispersity index values compared with other concentrations. Both type and concentration of surfactant had significant effects on the zeta potential. Formula F8 (containing 1% sodium deoxycholate) and Formula F12 (containing 1% sodium dodecyl sulfate) had the highest desirability values (0.952 and 0.927, respectively). Hence, they were selected for further characterization. The saturated solubility and mean dissolution time, in the case of F8 and F12, were significantly higher than the coarse drug powder. Techniques utilized in the nanocrystals' preparation had no effect on DCN crystalline state. The selected formula (F12) showed a higher bioavailability compared to the reference market product with relative bioavailability of 131.4%. Conclusion: The saturation solubility, in vitro dissolution rate and relative bioavailability of DCN were significantly increased after nanocrystallization. Less time and power consumption were applied by the combination of bottom-up and top-down techniques. © 2014 Elsayed et al.

2013
Yehia, S. A., A. H. Elshafeey, A. N. ElMeshad, and H. Al-Bialey, "Formulation and evaluation of itopride microcapsules in human volunteers", Journal of Drug Delivery Science and Technology, vol. 23, no. 3, pp. 239-245, 2013. AbstractWebsite

In this study an attempt to sustain the oral release of itopride hydrochloride (ITO), a highly water-soluble drug, by microencapsulation using different polymers was carried out. The prepared microcapsules were characterized according to: particle size, encapsulation efficiency, and in vitro drug release and in vivo study in healthy human volunteers. Results showed that the particle size of microcapsules ranged from 591 ± 2 to 886 ± 4 μm and the encapsulation efficiency of ITO inside microcapsules ranged from 63 ± 1 to 90 ± 1%. The optimum formulation had a particle size of 860 ± 11 μm and was able to entrap 90 ± 1% ITO. The in vitro release study showed that 88 ± 1% of ITO was released from the optimum formulation after 12 h using Eudragit RS-100. The pharmacokinetic parameters of the optimum formulation in human volunteers showed that the maximum plasma concentration was 1624 ± 168 ng/mL, AUC 0-∞ was 85835 ± 6116 ng .h/mL, AUC0-48 was 29728 ± 761 ng .h/mL, and the mean residence time was 108 ± 9 h. The relative bioavailability of ITO from the optimum formulation compared to commercial oral tablets Ganaton as a reference standard was 317.9%.

2012
b Elshafeey, A. H. a, Y. E. b Hamza, S. Y. b Amin, and H. a Zia, "In vitro transdermal permeation of fenoterol hydrobromide", Journal of Advanced Research, vol. 3, no. 2, pp. 125-132, 2012. AbstractWebsite

The aim of this study was to determine if transdermal penetration of fenoterol, a β-agonist drug, could be enhanced and controlled by formulation modification and formulation of transdermal patches. Pre-formulation studies were performed to determine the feasibility of a transdermal dosage form of fenoterol. Penetration of fenoterol was determined using the hairless guinea pig skin with unjacketed Franz diffusion cell. Transdermal patches were formulated using drug in-adhesive technique. Several enhancers were investigated for fenoterol skin penetration. Transcutol-oleic acid co-solvent gives the highest drug flux among all tested liquid formulations. Pretreatment of the skin with oleic acid 2. h before patch application significantly increases drug diffusion. Cis-oleic acid gives best results compared to oleic acid. Azone derivative (1-dodecyl-2-pyrrolidinone) gives the highest drug diffusion amongst all tested enhancers. Results of this study show the feasibility of using fenoterol formulated in transdermal delivery system in the treatment of chronic asthma to improve patient compliance, bioavailability and reduce the inter-subject variability. © 2011 Cairo University.

Tourism