Publications

Export 15 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Fu, L., H. Ouyang, C. Zhang, S. Li, and A. W. Mohamed, "A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems", Applied Soft Computing, vol. 121: Elsevier, pp. 108719, 2022. Abstract
n/a
Omar, M., A. M. Abdelalim, N. H. Mohamed, H. M. Abd-Elaty, M. A. Hammouda, Y. Y. Mohamed, M. A. Taifor, and A. W. Mohamed, "Enhancing Parkinson’s Disease Diagnosis Accuracy Through Speech Signal Algorithm Modeling", Computers, Materials & Continua, 2022. Abstract
n/a
Ortega-Sánchez, N., E. Rodríguez-Esparza, D. Oliva, M. Pérez-Cisneros, A. W. Mohamed, G. Dhiman, and R. Hernández-Montelongo, "Identification of apple diseases in digital images by using the Gaining-sharing knowledge-based algorithm for multilevel thresholding", Soft Computing: Springer Berlin Heidelberg, pp. 1-37, 2022. Abstract
n/a
Agrawal, P., T. Ganesh, D. Oliva, and A. W. Mohamed, "S-shaped and v-shaped gaining-sharing knowledge-based algorithm for feature selection", Applied Intelligence, vol. 52, issue 1: Springer US New York, pp. 81-112, 2022. Abstract
n/a
MohameD, A., D. Oliva, and P. N. Suganthan, Solving Constrained Single Objective Real-parameter Optimization Problems, : Springer, 2022. Abstract
n/a
MohameD, A., D. Oliva, and P. N. Suganthan, Solving Single Objective Bound-constrained Real-parameter Numerical Optimization Problems, : Springer, 2022. Abstract
n/a
2021
Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed, "Optimum Distribution of Protective Materials for COVID−19 with a Discrete Binary Gaining-Sharing Knowledge-Based Optimization Algorithm", Computational Intelligence Techniques for Combating COVID-19, Cham, Springer International Publishing, pp. 135 - 157, 2021. Abstract

Many application problems are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large dimensions. One of these practical applications is to optimally distribute protective materials for the newly emerged COVID-19. It is defined for a decision-maker who wants to choose a subset of candidate hospitals comprising the maximization of the distributed quantities of protective materials to a set of chosen hospitals within a specific time shift. A nonlinear binary mathematical programming model for the problem is introduced with a real application case study; the case study is solved using a novel discrete binary gaining-sharing knowledge-based optimization algorithm (DBGSK). The solution algorithm proposes a novel binary adaptation of a recently developed gaining-sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge through their life span. Discrete binary version of GSK named novel binary gaining-sharing knowledge-based optimization algorithm (DBGSK) depends mainly on two binary stages: binary junior gaining-sharing stage and binary senior gaining-sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.

Agrawal, P., T. Ganesh, D. Oliva, and A. W. Mohamed, S-shaped and V-shaped gaining-sharing knowledge-based algorithm for feature selection, , 2021. AbstractWebsite

In machine learning, searching for the optimal feature subset from the original datasets is a very challenging and prominent task. The metaheuristic algorithms are used in finding out the relevant, important features, that enhance the classification accuracy and save the resource time. Most of the algorithms have shown excellent performance in solving feature selection problems. A recently developed metaheuristic algorithm, gaining-sharing knowledge-based optimization algorithm (GSK), is considered for finding out the optimal feature subset. GSK algorithm was proposed over continuous search space; therefore, a total of eight S-shaped and V-shaped transfer functions are employed to solve the problems into binary search space. Additionally, a population reduction scheme is also employed with the transfer functions to enhance the performance of proposed approaches. It explores the search space efficiently and deletes the worst solutions from the search space, due to the updation of population size in every iteration. The proposed approaches are tested over twenty-one benchmark datasets from UCI repository. The obtained results are compared with state-of-the-art metaheuristic algorithms including binary differential evolution algorithm, binary particle swarm optimization, binary bat algorithm, binary grey wolf optimizer, binary ant lion optimizer, binary dragonfly algorithm, binary salp swarm algorithm. Among eight transfer functions, V4 transfer function with population reduction on binary GSK algorithm outperforms other optimizers in terms of accuracy, fitness values and the minimal number of features. To investigate the results statistically, two non-parametric statistical tests are conducted that concludes the superiority of the proposed approach.

Oliva, D., S. A. Hassan, and A. MohameD, Artificial intelligence for COVID-19, : Springer, 2021. Abstract
n/a
2020
Wu, W., H. Ouyang, A. W. Mohamed, C. Zhang, and S. Li, Enhanced harmony search algorithm with circular region perturbation for global optimization problems, , vol. 50, issue 3, pp. 951 - 975, 2020. AbstractWebsite

To improve the searching effectiveness of the harmony search (HS) algorithm, an enhanced harmony search algorithm with circular region perturbation (EHS_CRP) is proposed in this paper. In the EHS_CRP algorithm, a global and local dimension selection strategy is designed to accelerate the search speed of the algorithm. A selection learning operator based on the global and local mean level is proposed to improve the balance between exploration and exploitation. Circular region perturbation is employed to avoid the algorithm stagnation and get a better exploration region. To assess performance, the proposed algorithm is compared with 10 state-of-the-art swarm intelligent approaches in a large set of global optimization problems. The simulation results confirm that EHS_CRP has a significant advantage in terms of accuracy, convergence speed, stability and robustness. Moreover, EHS_CRP performs better than other tested methods in engineering design optimization problems. Thus, the EHS_CRP algorithm is a viable and reliable alternative for some difficult and multidimensional real-world problems.

Wu, W., H. Ouyang, A. W. Mohamed, C. Zhang, and S. Li, "Enhanced harmony search algorithm with circular region perturbation for global optimization problems", Applied Intelligence, vol. 50: Springer US, pp. 951-975, 2020. Abstract
n/a
Opara, K. R., A. A. Hadi, and A. W. Mohamed, "Parametrized Benchmarking: An Outline of the Idea and a Feasibility Study", Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, New York, NY, USA, Association for Computing Machinery, pp. 197–198, 2020. Abstract

Performance of real-parameter global optimization algorithms is typically evaluated using sets of test problems. We propose a new methodology of extending these benchmarks to obtain a more balanced experimental design. This can be done by selectively removing some of the transformations originally used in the definitions of the test problems such as rotation, scaling, or translation. In this way, we obtain several variants of each problem parametrized by interpretable, high-level characteristics. These binary parameters are used as predictors in a multiple regression model explaining the algorithmic performance. Linear models allow for the attribution of strength and direction of performance changes to particular characteristics of the optimization problems and thus provide insight into the underlying mechanics of the investigated algorithms. The proposed ideas are illustrated with an application example showing the feasibility of the new benchmark. Parametrized benchmarking is a step towards obtaining multi-faceted insight into algorithmic performance and the optimization problems. The overall goal is to systematize a method of matching problems to algorithms and in this way constructively address the limitations imposed by the no free lunch theorem.

Opara, K. R., A. A. Hadi, and A. W. Mohamed, "Parametrized benchmarking: an outline of the idea and a feasibility study", Proceedings of the 2020 genetic and evolutionary computation conference companion, pp. 197-198, 2020. Abstract
n/a
Tourism