, pp. 1-15, 2019.
OBJECTIVES: This study was aimed to develop dual-purpose natamycin (NAT)-loaded niosomes in ketorolac tromethamine (KT) gels topical ocular drug delivery system to improve the clinical efficacy of natamycin through enhancing its penetration through corneal tissue and reducing inflammation associated with Fungal keratitis (FK).
SIGNIFICANCE: Nanosized carrier systems, as niosomes would provide great potential for improving NAT ocular bioavailability.NAT niosomal dispersion formulae were prepared and then incorporated in 0.5%KT gels using different mucoadhesive viscosifying polymers.
METHODS: Niosomes were prepared using the reverse-phase evaporation technique. In vitro experimental, and in vivo clinical evaluations for these formulations were done for assessment of their safety and efficacy for treatment of Candida Keratitis in Rabbits. In vitro release study was carried out by the dialysis method. In vivo and histopathological studies were performed on albino rabbits.
RESULTS: NAT niosomes exhibited high entrapment efficiency percentage (E.E%) up to96.43% and particle size diameter ranging from 181.75 ± 0.64 to 498.95 ± 0.64 nm, with negatively charged zeta potential (ZP). NAT niosomal dispersion exhibited prolonged in vitro drug release (40.96-77.49% over 24h). NAT-loaded niosomes/0.5%KT gel formulae revealed retardation in vitro release, compared to marketed-product (NATACYN and NAT-loaded niosomes up to57.32% (F8). In vivo experimental studies showed the superiority for F8 in treatment of candida keratitis and better results on corneal infiltration and hypopyon level. These results were consistent with histopathological examination in comparison with F5 and combined marketed products (NATACYN and Ketoroline).
CONCLUSIONS: This study showed that F8 has the best results from all pharmaceutical in vitro evaluations and a better cure percent in experimental application and enhancing the prolonged delivery of NAT and penetrating the cornea tissues.