Publications

Export 73 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Saleem, S. N., and Z. Hawass, "Ankylosing spondylitis or diffuse idiopathic skeletal hyperostosis (DISH) in Royal Egyptian mummies of 18th-20th Dynasties? CT and archaeology studies", Arthritis and Rheumatology , vol. 66, issue 12, pp. 3311-3316, 2014.
Saleem, S. N., "Fetal MRI: An approach to practice", Journal of Advanced Research, vol. 5, issue 5, pp. 507-523, 2014. Abstractjar_2013_article.pdf

MRI has been increasingly used for detailed visualization of the fetus in utero as well as pregnancy structures. Yet, the familiarity of radiologists and clinicians with fetal MRI is still limited. This article provides a practical approach to fetal MR imaging. Fetal MRI is an interactive scanning of the moving fetus owed to the use of fast sequences. Single-shot fast spin-echo (SSFSE) T2-weighted imaging is a standard sequence. T1-weighted sequences are primarily used to demonstrate fat, calcification and hemorrhage. Balanced steady-state freeprecession (SSFP), are beneficial in demonstrating fetal structures as the heart and vessels. Diffusion weighted imaging (DWI), MR spectroscopy (MRS), and diffusion tensor imaging (DTI) have potential applications in fetal imaging. Knowing the developing fetal MR anatomy is essential to detect abnormalities. MR evaluation of the developing fetal brain should include recognition of the multilayered-appearance of the cerebral parenchyma, knowledge of the timing of sulci appearance, myelination and changes in ventricular size. With advanced gestation, fetal organs as lungs and kidneys show significant changes in volume and T2-signal. Through a systematic approach, the normal anatomy of the developing fetus is shown to contrast with a wide spectrum of fetal disorders. The abnormalities displayed are graded in severity from simple common lesions to more complex rare cases. Complete fetal MRI is fulfilled by careful evaluation of the placenta, umbilical cord and amniotic cavity. Accurate interpretation of fetal MRI can provide valuable information that helps prenatal counseling, facilitate management decisions, guide therapy, and support research studies.

El-Bassyouni, H. T., G. H. Abdel Salam, S. N. Saleem, H. F. Kayed, M. M. Eid, M. Shihab, M. E. Zaki, and Z. MS, "Holoprosencephaly spectrum among Egyptian Patients: clinical and cytogenetic study", Genetic Counseling , vol. 25, issue 4, pp. 369-381, 2014.
Youssef, A., S. Zagonari, G. Salsi, S. N. Saleem, J. Krsmanovic, and G. Pacella, "Prenatal diagnosis of isolated butterfly vertebra", Ultrasound in Obstetrics & Gynecology, vol. 44, issue 6, pp. 26-27, 2014.
2013
Saleem, S. N., "Fetal Magnetic Resonance Imaging (MRI): A Tool for a Better Understanding of Normal and Abnormal Brain Development.", Journal of Child Neurology , issue 13(7), pp. 889-907 , 2013. Abstractsaleem_journal_of_child_neurology_2013.pdf

Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

Saleem, S. N., and Z. Hawass, "Variability in Brain Treatment During Mummification of Royal Egyptians Dated to the 18th–20th Dynasties: MDCT Findings Correlated With the Archaeologic Literature", American Journal of Roentgenology, vol. 200, issue 4, pp. W336-W344, 2013. Abstract

OBJECTIVE. The objective of our study was to use MDCT to study brain treatment and removal (excerebration) as part of mummification of royal Egyptian mummies dated to the 18th to early 20th Dynasties and to correlate the imaging findings with the archaeologic literature.

MATERIALS AND METHODS. As part of an MDCT study of the Royal Ancient Egyptian Mummies Project, we analyzed CT images of the heads of 12 mummies dated to circa 1493–1156 BC (18th to early 20th Dynasties). We reconstructed and analyzed CT images for the presence of cranial defects, brain remnants, intracranial embalming materials, and nasal packs. We compared the CT findings of mummies dated to the 18th Dynasty with those dated to the 19th to early 20th Dynasties.

RESULTS. The Akhenaten mummy was excluded because of extensive postmortem skull fractures. CT showed that no brain treatment was offered to three mummies (Thutmose I, II, and III) who dated to the early 18th Dynasty and was offered to the eight mummies who dated later. The route of excerebration was transnasal in eight mummies; an additional suspected route was via a parietal defect. CT showed variable appearances of the intracranial contents. There were larger volumes of cranial packs and more variability in the appearances of the cranial packs in the royal mummies dated to the 19th to 20th Dynasties than in those dated to the 18th Dynasty.

CONCLUSION. MDCT shows variations in brain treatment during mummification of royal Egyptian mummies (18th–20th Dynasties). This study sets a template for future CT studies of the heads of ancient Egyptian mummies and focuses on the key elements of cranial mummification in this ancient era.

2012
Maha S Zaki, Sahar N Saleem, W. D. J. B. H. B. A. D. M. A. N. A. J. B. A. M., "Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation", Brain, vol. 135, issue 8, pp. 2416-2427, 2012. Abstract

We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term ‘diencephalic–mesencephalic junction dysplasia’ to characterize this autosomal recessive malformation.

Zaki, M. S., S. N. Saleem, W. B. Dobyns, A. J. Barkovich, H. Bartsch, A. M. Dale, M. Ashtari, N. Akizu, J. G. Gleeson, and A. M. Grijalvo-Perez, "Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation", Brain, vol. 135, no. 8: Oxford University Press, pp. 2416–2427, 2012. Abstract

We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term ‘diencephalic–mesencephalic junction dysplasia’ to characterize this autosomal recessive malformation.

SN, S., "Fetal Cardiac Magnetic Resonance (CMR)", Echocardiography - New Techniques: InTech, 2012. CU-PDF
Saleem, S. N., "Fetal Cardiac Magnetic Resonance (CMR)", Echocardiography-New, 2012. Abstract

n/a

SN, S., and S. YY, "Measuring competence of Radiology Education Programs and Residents: The Egyptian Experience", Radiology Education: The Evaluation and Assessment of Clinical Competence. , Berlin Heidelberg , Springer-Verlag Berlin Heidelberg , 2012. AbstractCU-PDF

Ancient Egypt had an advanced elaborate medical education and practice ruled by a competent bureaucracy that apprenticed physicians to be practicing healers. In modern history, the Faculty of Medicine at Cairo University (Kasr Al-Ainy), established in 1827, continues the glory of Egypt in medical education as one of the biggest and oldest medical schools in Africa and the Middle East. Its central Radiology Department, with its total 77 radiologists, is responsible for clinical services as well as for providing multiple calibre radiology education programs for about 100 trainees annually from Egypt and neighbouring countries. Radiology education programs are planned for radiology residents to obtain master’s degree (M.Sc.), for assistant lecturers to obtain medical doctorate (M.D.) and for visitor trainees. Objectives of radiology education programs include knowledge, practical skills, intellectual capabilities and communications with medical societies and communities. Trainees are assessed to determine if learning objectives have been fulfilled on a daily, weekly and biannual basis. Radiology education programs are measured for professional performance through the university’s self-assessment studies; national assessment is measured through the National Authority for Quality Assurance and Accreditation in Education (NAQAAE), Egypt, and international assessment is measured through the World Federation for Medical Education (WFME).

Ghada MH Abdel‐Salam, Mohamed S Abdel‐Hamid, S. S. M. K. H. A. M. I. L. E. H. K. M. N. K. F., "Profound microcephaly, primordial dwarfism with developmental brain malformations: A new syndrome", American Journal of Medical Genetics Part A, vol. 158A, issue 8, pp. 1823-1831, 2012. AbstractCU-PDF

We describe two sibs with a lethal form of profound congenital microcephaly, intrauterine and postnatal growth retardation, subtle skeletal changes, and poorly developed brain. The sibs had striking absent cranial vault with sloping of the forehead, large beaked nose, relatively large ears, and mandibular microretrognathia. Brain magnetic resonance imaging (MRI) revealed extremely simplified gyral pattern, large interhemispheric cyst and agenesis of corpus callosum, abnormally shaped hippocampus, and proportionately affected cerebellum and brainstem. In addition, fundus examination showed foveal
hypoplasia with optic nerve atrophy. No abnormalities of the internal organs were found. This profound formof microcephaly was identified at 17 weeks gestation by ultrasound and fetal brain MRI helped in characterizing the developmental brain malformations in the second sib. Molecular analysis excluded mutations in potentially related genes such asRNU4ATAC,SLC25A19, and ASPM. These clinical and imaging findings are unlike that of any recognized severe forms of microcephaly which is believed to
be a new microcephalic primordial dwarfism (MPD) with developmental brain malformations with most probably autosomal recessive inheritance based on consanguinity and similarly affected male and female sibs.

Hawass, Z., S. Ismail, A. Selim, S. N. Saleem, and D. Fathalla, "Revisiting the harem conspiracy and death of Ramesses III: anthropological, forensic, radiological, and genetic study", BMJ: British Medical Journal, vol. 345, 2012. Abstract

Objective To investigate the true character of the harem conspiracy described in the Judicial Papyrus of Turin and determine whether Ramesses III was indeed killed.

Design Anthropological, forensic, radiological, and genetic study of the mummies of Ramesses III and unknown man E, found together and taken from the 20th dynasty of ancient Egypt (circa 1190-1070 BC).

Results Computed tomography scans revealed a deep cut in Ramesses III’s throat, probably made by a sharp knife. During the mummification process, a Horus eye amulet was inserted in the wound for healing purposes, and the neck was covered by a collar of thick linen layers. Forensic examination of unknown man E showed compressed skin folds around his neck and a thoracic inflation. Unknown man E also had an unusual mummification procedure. According to genetic analyses, both mummies had identical haplotypes of the Y chromosome and a common male lineage.

Conclusions This study suggests that Ramesses III was murdered during the harem conspiracy by the cutting of his throat. Unknown man E is a possible candidate as Ramesses III’s son Pentawere.

Saleem, S. N., and Y. Y. Sabri, "Measuring Competence of Radiology Education Programs and Residents: The Egyptian Experience", Radiology Education: Springer Berlin Heidelberg, pp. 129–141, 2012. Abstract
n/a
Abdel-Salam, G. M. H., M. S. Abdel-Hamid, S. N. Saleem, M. K. H. Ahmed, M. Issa, L. K. Effat, H. F. Kayed, M. S. Zaki, and K. R. Gaber, "Profound microcephaly, primordial dwarfism with developmental brain malformations: A new syndrome", American Journal of Medical Genetics Part A: Wiley Subscription Services, Inc., A Wiley Company, 2012. Abstract
n/a
Hawass, Z., S. Ismail, A. Selim, S. N. Saleem, D. Fathalla, S. Wasef, A. Z. Gad, R. Saad, S. Fares, H. Amer, et al., "Revisiting the harem conspiracy and death of Ramesses III: anthropological, forensic, radiological, and genetic study", BMJ: British Medical Journal, vol. 345: BMJ, 2012. Abstract
n/a
2011
Lancaster, M. A., D. J. Gopal, J. Kim, S. N. Saleem, J. L. Silhavy, C. M. Louie, B. E. Thacker, Y. Williams, M. S. Zaki, and J. G. Gleeson, "Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome", Nature Medicine, vol. 17, no. 6: Nature Publishing Group, pp. 726–731, 2011. Abstract
n/a
Lancaster, M. A., D. J. Gopal, J. Kim, S. N. Saleem, J. L. Silhavy, C. M. Louie, B. E. Thacker, Y. Williams, M. S. Zaki, and J. G. Gleeson, "Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome", Nature medicine, vol. 17, no. 6: Nature Publishing Group, pp. 726–731, 2011. Abstract
n/a
Hawass, Z., and S. N. Saleem, "Mummified Daughters of King Tutankhamun: Archeologic and CT Studies", American Journal of Roentgenology, vol. 197, no. 5: Am Roentgen Ray Soc, pp. W829–W836, 2011. Abstract
n/a
Zaki, M. S., G. M. H. Salam, S. N. Saleem, W. B. Dobyns, M. Y. Issa, S. Sattar, and J. G. Gleeson, "New recessive syndrome of microcephaly, cerebellar hypoplasia, and congenital heart conduction defect", American Journal of Medical Genetics Part A: Wiley Online Library, 2011. Abstract
n/a
Saleem, S. N., M. S. Zaki, N. A. Soliman, and M. Momtaz, "Prenatal Magnetic Resonance Imaging Diagnosis of Molar Tooth Sign at 17 to 18 Weeks of Gestation in Two Fetuses at Risk for Joubert Syndrome and Related Cerebellar Disorders", Neuropediatrics, vol. 42, no. 1: Thieme, pp. 35–38, 2011. Abstract
n/a
2010
Behairy, N. H., S. Talaat, S. N. Saleem, and M. A. El-Raouf, "Magnetic resonance imaging in fetal anomalies: What does it add to 3D and 4D US?", European journal of radiology, vol. 74, no. 1: Elsevier, pp. 250–255, 2010. Abstract
n/a
Behairy, N. H., S. Talaat, S. N. Saleem, and M. A. El-Raouf, "Magnetic resonance imaging in fetal anomalies: What does it add to 3D and 4D US?", European journal of radiology, vol. 74, no. 1: Elsevier, pp. 250–255, 2010. Abstract
n/a
Tourism