Aptian—early Albian sedimentation in the Essaouira-Agadir basin, Western Morocco

Etienne Jaillard a,*, Walid Hassanein Kassab b, Fabienne Giraud a, Emmanuel Robert c, Moussa Masrour d, Lhoussaine Bouchou d, Khadija El Haririe e, Mohamed S. Hammed b, Mohamed F. Aly b

a Université Grenoble Alpes, IFTerre, IRD, CNRS, IFSTTAR, CS 40700, 38058 Grenoble Cedex 9, France
b Earth Science Department, Cairo University, Gizah, Egypt
c Université Lyon 1, ENS Lyon, CNRS, UMR 5276 UGLITE, 69622 Villeurbanne, France
d Université Ibn Zohr, Faculté des Sciences, Département de Géologie, Laboratoire LAGAGE, BP 8106, Cité Dakhla, Agadir, Morocco
e Université Cadi Ayyad, Faculté des Sciences et Techniques-Gueliz, Département Sciences de la Terre, Avenue Abdelkrim el Khattabi, BP 549, 40000 Marrakech, Morocco

ARTICLE INFO

Article history:
Received 5 November 2018
Received in revised form 1 April 2019
Accepted in revised form 17 April 2019
Available online 25 April 2019

Keywords:
Early Cretaceous
Sedimentology
Sequence stratigraphy
Paleoenvironment
Paleogeography

ABSTRACT

Aptian to early Albian times were marked by various geodynamic and paleoenvironmental events such as large igneous province volcanism, perturbations of climate and the carbon cycle, and sea-level changes. The Essaouira-Agadir basin (EAB), located on the Atlantic passive margin of Morocco, offers good and fossiliferous exposures of the Aptian—early Albian sedimentary series. A detailed analysis of this succession made it possible to establish a biostratigraphic framework. The identification of discontinuities allowed to define eight depositional sequences. As most of them are correlatable with depositional sequences of other Tethyan areas, they suggest that eustacy was the main parameter controlling sedimentation. The analysis of sedimentary facies and nannofossil assemblages provides information on paleoenvironmental changes.

Sedimentation in the EAB evolved from a very low energy, carbonate ramp in the early Aptian to a low energy, slightly deeper, mixed carbonate-clastic ramp in the early Albian. This change occurred along with an increase of clastic input, a change from oligotrophic to mesotrophic faunal assemblages, and a decrease of sea-surface temperatures. The occurrence of current sedimentary features, sporadic dysaerobic deposits and local phosphatic and glauconitic crusts suggests that upwelling currents were significant during this period.

Paleogeographic and isopach maps support a transgressive trend in the late Aptian and early Albian, and unravel subsidence anomalies suggesting mild halokinetic movements during Aptian—early Albian times.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The Aptian to early Albian was an interval of important oceanographic, climatic and geodynamic changes. In fact, this period recorded the earliest significant Oceanic Anoxic Event (OAE) of the Cretaceous crises in the biological and/or carbon cycles, resulting in deposition of organic-rich “black shales” (e.g. Schlanger and Jenkyns, 1976; Giorgioni et al., 2015). The rifting and opening of the Atlantic ocean at equatorial latitudes (e.g. Moulin et al., 2010; Klingelhofer et al., 2016) opened new N–S oceanic connections, whereas the former Tethyan system was dominated by E-W oceanic circulations. A warm climate, related to the greenhouse effect (Füllimi, 2012) was followed by significant cooling of the global ocean and climate in the late Aptian (Bottini et al., 2015). The emplacement of large igneous provinces influenced global climate (Kuroda et al., 2011). Noticeable, widespread lower Aptian carbonate shelves developed during the early Aptian (e.g. Skelton and Gili, 2012), and a significant sea-level fall in the early Aptian was followed by a marked late Aptian—early Albian sea-level rise recorded in most areas around the world (Haq, 2014). Therefore,
sedimentary record of the Aptian–lower Albian has been extensively studied in the North-Tethyan margin, but remains relatively poorly studied elsewhere. The Aptian–lower Albian succession is poorly known in northern Africa, likely because it consists either of carbonate shelf, or of sand-rich deposits poor in ammonites (e.g. Burollet, 1956; Vila, 1980), or of shelf marls rich in endemic ammonite fauna (e.g. Latil, 2011; Robert in; Peybernès et al., 2013; Luber et al., 2017). The Western Atlas of Morocco offers a good opportunity for studying the Aptian–lower Albian, seeing that good exposures of fossiliferous successions are easily accessible.

We did a stratigraphic and sedimentological study of the Aptian–lower Albian deposits of the Essaouira-Agadir Basin (EAB), which constitutes the Western end of the Atlas chain (Fig. 1). Here, we present a preliminary biostratigraphic scheme, a detailed sedimentological analysis mainly based on field observations along thirteen sections distributed in the central and southern parts of the EAB, a sequence stratigraphic interpretation of this succession and a paleogeographic synthesis of the sedimentary evolution of the basin. In order to better constrain paleoenvironments, we provide additional data on calcium carbonate content, total organic carbon (TOC) and calcareous nannofossils. These data are compared to sedimentary facies to better understand the temporal and spatial relationships between carbonate production, primary productivity, oxygenation of the water column, and organic carbon burial during changes in both sea-surface temperature and sea level.

2. Geological background

The EAB (Fig. 1) belongs to the Atlantic passive margin. Its Mesozoic sedimentary history began with the Tethyan rifting, which eventually provoked the opening of the Central Atlantic (Zühlke et al., 2004; Hafid et al., 2008; Schettino et al., 2009). Therefore, it has been marked by strong extensional tectonics from late Permian to early Liassic times, coeval with deposition of thick red beds, overlain by shales and evaporites interbedded with basaltic flows, and sealed by a pre-Plainsbachian unconformity (Hafid, 2000). An extensional regime prevailed until the Late Cretaceous, and favoured the deposition of shallow marine deposits in the EAB. Shelf carbonates deposition prevailed during the Jurassic and was interrupted by regressions in Middle and latest Jurassic times (Stets, 1992), due to the general uplift of the High Atlas (Frizon de Lamotte et al., 2008). The Early Cretaceous is marked by the deposition of thick, mainly marly marine deposits, sporadically interrupted by clastic deposits deriving from the East (late Hauterivian, late Barremian; Canérot et al., 1986; Rey et al., 1988; Witam, 1998; Masrour et al., 2004; Al Yacoubi et al., 2017). Aptian to Turonian times are represented by marine, marly and calcareous strata (Ambroggi, 1963; Bourgeoïni et al., 2002; Ettachfini et al., 2005; Jati et al., 2010; Peybernès et al., 2013). The Upper Cretaceous mainly calcareous sedimentation (Andreu, 1989) was then disturbed by a first Santonian–Campanian compressional deformation (Guiraud and Bosworth, 1997) and became mostly clastic (Algouti et al., 1999). The Cenozoic Alpine compression (mainly middle–late Eocene to Pleistocene) then inverted the Lower Jurassic normal and transcurrent faults, and folded the EAB (Frizon de Lamotte et al., 2000, 2008, 2011; Hafid, 2000). Offshore in the EAB, salt tectonics are well documented to have been active in Middle Jurassic and Late Cretaceous–Eocene times, with local activity in the Early Cretaceous (Hafid, 2000; Davison et al., 2010; Tari and Labour, 2013). Brautigam et al. (2009) and Bertotti and Gouiza (2012) mentioned Upper Jurassic–Lower Cretaceous syn-sedimentary tectonics, which they hypothetically related to compressional strain in part of the EAB.

The EAB is presently bounded to the North by the Jebilet High, and to the East and South by the High Atlas (Hafid, 2000) (Fig. 1). The Mesozoic sedimentary strata of the EAB dip gently towards the
West. The western part of the EAB is divided into three parts by two major E-W trending anticlines, the Amsittene and Imouzzer anticlines, the western tips of which form the Cap Tafelnay and the Cap Rhir, respectively (Fig. 1). Between these two major folds, a minor, smooth, E-W trending anticline separates two gentle synclines where Aptian–Albian deposits crop out (Fig. 1B). In the western part of the EAB, uplifted Pliocene marine terraces truncate, and unconformably overlie, the Mesozoic series, and are presently at 50–100 m above sea level.

Most of our present knowledge on the Aptian–Albian stratigraphy is due to Gentil (1905) and Roch (1930), who first described ammonites from this area, to Ambroggi (1963), who proposed an exhaustive stratigraphic scheme for the EAB, based on detailed lithostratigraphic descriptions and associated fossil determination, to Duffaud et al. (1966), who published a synthesis of the area and defined formations in the Cretaceous series, and to Rey et al. (1988), Witam (1998) and Bourgeois et al. (2002), who conducted micropaleontological studies on the Lower Cretaceous succession. More recently, Peybernès et al. (2013) and Luber et al. (2017; 2019) proposed preliminary stratigraphic, sedimentological and palaeoenvironmental analysis of the upper Aptian–lower Albian series of the EAB. According to these authors, the Aptian–lower Albian sedimentary rocks rest on red beds and massive sandstones of the Bouzergoun Formation (Fm.) of late Barremian age, and encompasses (i) the Tamzergout Fm., made of marlstone and limestone of late Aptian age, (ii) the alternating marlstone and limestone of the Tadhart Fm. of early late Aptian age, (iii) the thin, marly Lemgo Fm. of latest Aptian age, and (iv) the mainly marly Oued Tidzi Fm., of early to late Albian age (Fig. 2).

In this work, we shall use the biostratigraphic scheme based on ammonites by one of us (E.R.), which has been published in Peybernès et al. (2013). The study area encompasses the area comprised between the city of Agadir, and the northern major anticline (jebel Amsittene). Thirteen sections of the Aptian–lower Albian series have been studied: five are located south of the Imouzzer anticline, five to the north of the latter, and three at the Amsittene anticline latitude (Fig. 1B, Table 1).

Table 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Base</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addar</td>
<td>30° 36'04"N – 9° 43'31"W</td>
<td>30° 35'54"N – 9° 43'04"W</td>
</tr>
<tr>
<td>Alma</td>
<td>30° 31'47"N – 9° 35'45"W</td>
<td>30° 31'54"N – 9° 35'46"W</td>
</tr>
<tr>
<td>Anzate</td>
<td>30° 32'18"N – 9° 35'08"W</td>
<td>30° 32'23"N – 9° 35'10"W</td>
</tr>
<tr>
<td>Aoulikjad</td>
<td>30° 45'47"N – 9° 35'31"W</td>
<td>30° 46'17"N – 9° 35'58"W</td>
</tr>
<tr>
<td>Ida w Shayl</td>
<td>31° 03'35"N – 9° 36'04"W</td>
<td>31° 03'31"N – 9° 36'01"W</td>
</tr>
<tr>
<td>Imouzene</td>
<td>30° 50'33"N – 9° 48'54"W</td>
<td>30° 50'30"N – 9° 48'54"W</td>
</tr>
<tr>
<td>Takoukht</td>
<td>31° 09'52"N – 9° 24'17"W</td>
<td>31° 09'56"N – 9° 24'37"W</td>
</tr>
<tr>
<td>Tamri</td>
<td>30° 45'49"N – 9° 48'40"W</td>
<td>30° 45'47"N – 9° 48'38"W</td>
</tr>
<tr>
<td>Tamzergout</td>
<td>30° 32'47"N – 9° 34'01"W</td>
<td>30° 32'40"N – 9° 34'12"W</td>
</tr>
<tr>
<td>Taounerine</td>
<td>30° 48'35"N – 9° 44'27"W</td>
<td>30° 48'45"N – 9° 44'19"W</td>
</tr>
<tr>
<td>Tinfoul</td>
<td>30° 32'27"N – 9° 24'53"W</td>
<td>30° 32'24"N – 9° 24'58"W</td>
</tr>
<tr>
<td>Tiskatine</td>
<td>30° 45'43"N – 9° 39'14"W</td>
<td>30° 46'06"N – 9° 39'23"W</td>
</tr>
</tbody>
</table>

3. Material and methods

3.1. Sedimentology and biostratigraphy

Twelve sections have been studied in the central and southern parts of the EAB (Fig. 1B), which are 30–120 m thick, except for the Tamri and Imouzene condensed sections, whose thicknesses do not exceed 20 m. All sections have been measured, studied and sampled bed by bed for paleontological study. Most sedimentological observations have been made in the field, where the lithology, sedimentary features (texture, bioturbation, current figures, dissolution or erosion features etc.), mineral concentrations and faunal assemblages have been carefully noted. Particular attention was paid to the lower and upper bed surfaces, as they bear important information on sedimentary discontinuities.

When present, ammonites were extensively collected bed by bed, and precisely located along the studied section. Ammonites consist of pyritic, phosphatic or calcareous molds, the latter being less well preserved. After transport to France, these thousands of ammonites were cleaned and studied by one of us (E.R.), through comparisons with specimens or casts preserved in museum and...
3.2. Calcareous nannofossils

Calcareous nannofossils were studied in 139 samples from Ida w Shayq, Tiskatine, Anzate and Tinfoul sections. Samples were prepared using the standard settling technique of Geisen et al. (1999), adapted from Beaufort (1991), which allows the calculation of absolute abundances (number of specimens per gram of rock). Nannofossils were observed at 1500× magnification using a polarizing light microscope. At least 300 specimens per sample, both coccoliths and nannoliths, were generally counted in a variable number of fields of view (a mean of 446, 369, 402, and 497 for the Anzate, Ida w Shayq, Tinfoul and Tiskatine sections, respectively). An amount of 300 counted specimens is generally considered to be sufficient to have a good estimation of species richness in one sample; in addition, the number of fields of view required to count 300 specimens allows an estimation of the nannofossil abundance (Bown and Young, 1998). In 20 samples (5, 5, 3, and 3 samples from Anzate, Ida w Shayq, Tinfoul and Tiskatine, respectively), less than 300 nannofossils (from 1 up to 208 specimens) were counted, due to the paucity and poor preservation of nannofossils. All nannofossils with at least more than half of the specimen preserved were counted. Both nannofossil total absolute abundance and relative abundances of some key taxa were calculated for each sample. In these calculations, Nannococcus spp. were excluded from the total sum of nannofossils because of their uncertain biological affinity (Aubry et al., 2005). The taxonomic frameworks of Perch-Nielsen (1985) and Burnett et al. (in Bown, 1998) were followed. The nannofossil preservation was evaluated following the classes defined by Roth (1983).

Calcibalcnous nannofossils are used in this study to better constrain the paleoenvironmental conditions, in particular, trophic levels in the water column, pelagic carbonate production and seawater temperatures. Calcareous nannofossil primary productivity is an indicator of trophic levels in the water column; it is estimated here both with total absolute abundance and relative abundances of fertility indicators such as Biscutum spp., Dicerohabditus rotatorius, Lithraphidites carniolensis and small Zeugohabditus spp. (Table 2; Peybernes et al., 2013). The relative abundances of both Nannococcus spp., which constitute the biggest nannofossil carbonate califiers and of calcibalcnous nannofossil seawater temperature indicators were calculated. Calcareous nannofossils considered as high latitude taxa (Crucibucitum spp., Repagulut parvidentatum, Rhogodiscus angustus and Seribiscutum spp.; Table 2) were considered in this study.

4. Results

4.1. Ammonite biostratigraphy

In the EAB, Aptian and Albian ammonites have been first reported by Brives (1905), Gentil (1905), Lemoine (1905), Kilian and Gentil (1906, 1907) and Roch (1930). While carrying out a regional stratigraphic synthesis of the EAB, Ambroggi (1963) listed Cretaceous ammonite specimens, collected unit by unit and identified by Breistroffer (e.g., Ambroggi and Breistroffer, 1959). Later, Wiedmann et al. (1978, 1982), Rey et al. (1986, 1988), Andreu (1989) and Witam (1998) brought new precisions on ammonite occurrences. Since then, E. Robert (in Peybernes et al., 2013) and L. Bolot (in Lubel et al., 2017, 2019) refined the ammonite biostratigraphy of the Aptian–lower Albian succession of the EAB.

In this work, since many new species and genus have been identified, and the lower part of the successions is locally highly condensed, the presented biozones are accurate but preliminary, pending on careful taxonomic revision (Giraud, Robert et al., in progress). In spite of the absence in our collected samples of many of the zonal markers, we were able to correlate the ammonite successions of the EAB with those of the Mediterranean and Tethyan regions, and thus with the standard biostratigraphic ammonite zones (Reboulet et al., 2018). Although latest Barremian ammonites are present (Jaillard et al., 2019), earliest Aptian specimens from the Deshayesites oglanensis Zone have not been found in the recently studied Aoulikjad and Takoukt sections, confirming a hiatus of this interval (Peybernes et al., 2013; Lubel et al., 2017).

The lower Aptian record is poorly represented, and was best studied in the northern sections. There, the Deshayesites forbesi Zone has been tentatively identified by the presence of Deshayesites consorbinosus, associated with Ancyloceras sp. and first cheloniceratids (Procheloniceras sp. and Cheloniceras sp.). The Deshayesites deshayesi Zone is marked by the occurrence of Deshayesites deshayesi, D. consorbinoides, D. cf. grandis, Pseudahaploceras sp., numerous cheloniceratid species (among which Procheloniceras sp., Cheloniceras cornuelianum, C. meyendorfi), and the Ancyloceras genus, among which A. cf. mutheronianum. The subsequent Dufrenoyia jurcata Zone is identified because of the presence of Dufrenoyia jurcata, Australliceras sp. and Toxoceratoides mericianum.

The upper Aptian record is well represented in almost all sections. The Epicheloniceras martini Zone is identified by the
appearance of numerous specimens of the Epicheloniceras genus (E. martini, E. tschernyschewi), together with Colombiceras crassicostatum and other species of the genera Vectisites, Neodufrenoyia gen. nov. and Colombiceras. The upper part of the E. martini Zone is marked by a well correlatable horizon bearing abundant Australiceras and Pseudaustraliceras (“Tropaeum beds” of the literature).

The Paracheloniceras melchioris Zone is poorly represented in the EAB. The association of Acanthohoplites sp., Colombiceras discoidales and Valderorsella akuschaense is tentatively ascribed to this zone. In overlying strata, the Acanthohoplites nolani Zone and subsequent zones present a fairly high faunal diversity.

The Acanthohoplites nolani Zone is represented in all sections and the historical, long recognized “nolani bed” represents a good correlation level. Bulot and Latil (2014) called into question the use of A. nolani as a zone index, and Luber et al. (2017) pointed out the misidentification of this species for the Moroccan representatives, and introduced the species Easabellina tiskaittensis. Nevertheless, we will follow the current standard zonation, awaiting for next discussions of this purpose by the Kilian Group. In the “A. nolani” zone, the associated fauna consists of Epicheloniceras claysense, Aconeceras aptiana, Pseudohoplaceras sp., Diadococheras sp., Zuercherella sp. and specimens of the Neodufrenoyia gen. nov. and Acanthohoplites genera (among which A. bergeroni, A. bigoureti and A. nolani bed). Acanthohoplites nolani Zone is poorly represented in the EAB. The association of Acanthohoplites sp., Colombiceras discoidales and Valderorsella akuschaense is tentatively ascribed to this zone. In overlying strata, the Acanthohoplites nolani Zone and subsequent zones present a fairly high faunal diversity.

The Acanthohoplites nolani Zone is represented in all sections and the historical, long recognized “nolani bed” represents a good correlation level. Bulot and Latil (2014) called into question the use of A. nolani as a zone index, and Luber et al. (2017) pointed out the misidentification of this species for the Moroccan representatives, and introduced the species Easabellina tiskaittensis. Nevertheless, we will follow the current standard zonation, awaiting for next discussions of this purpose by the Kilian Group. In the “A. nolani” zone, the associated fauna consists of Epicheloniceras claysense, Aconeceras aptiana, Pseudohoplaceras sp., Diadococheras sp., Zuercherella sp. and specimens of the Neodufrenoyia gen. nov. and Acanthohoplites genera (among which A. bergeroni, A. bigoureti and A. nolani bed).

The Hypacanthoplites jacobi Zone is mainly represented by pyritous ammonites, and is defined by the first occurrence of Hypacanthoplites spp. (H. noliformis, H. elegans, H. clavatus). They are associated with Epicheloniceras claysense, Pseudohubperlices convergens, Phylloceras (Phylloceras) apiense, Diadococheras migneni, Parasilesites kilianiformis, and representatives of the genera Eogaudryceras, Fallotermiericeras gen. nov., Neodufrenoyia, first Phyllopachyceras and Eogaudryceras (Esotragonites).

The lowermost Albian record is well represented, although the corresponding fauna is poorly preserved. The Leymeriella tardefucata Zone is characterized by the occurrence of various specimens of Silesiostoidinae and of the genera Phylloceras, Phyllopachyceras, Hypacanthoplites, Mellegueiceras, Parengonoceras, Uhligella, Pusozia, Eogaudryceras (Esotragonites) together with Douvilleiceras leightonense, Oxytopidoceras (Oxytopidoceras) sp., O. (Mirapella) mirapelianum, Neosilesites palmensis, Ptychoceras laeve, Parabrancoceras sp. and other less representative or endemic specimens. Mainly because of poor outcrops in a chiefly argillaceous series, the Douvilleiceras mammillatum Superzone is less represented. However, the occurrence, among others, of Douvilleiceras mammillatum aequinodum, Prolyelliceras vegrevyi, Beudanticeras dupiniatum africana, B. revolii, Uhligella reboulit, Parengonoceras bussoni and P. hachourii characterizes this time span. The “Beudanticeras beds” (Roch, 1930; Ambroggi, 1963) mostly belong to this interval.

Toward the West (Tamri, Imouane), the Aptian–lower Albian series is condensed in a phosphate- and glauconite-rich, conglomeratic level, which contains ammonites of early Aptian to earliest Albian age (Robert, in Peybernès et al., 2013).

4.2. Sedimentary facies

Aptian facies differ from those of the uppermost Aptian–lower Albian series, in their lithology and detrital quartz content, as well as in their faunal content.

4.2.1. Aptian facies (Fig. 3)

Facies 1 (F 1): Facies 1 is made of shales or shaly marlstone, containing mainly belemnites and some ammonites. Sandstone or marl beds are almost absent (less than 5% in thickness). Scarse thin-shelled bivalves, annelids (serpulids) and small-sized gastropods may occur. Because of the shaly nature of the deposits, bioturbation is hardly visible. Ammonites may be pyritous. Interpretation: The lack or scarcity of carbonate suggests that sedimentation took place far from the “carbonate factory” (Tucker and Wright, 1990; Schlager, 2003) located in the nearshore euphotic zone, where photosynthesis favours the organic activity of carbonate generating organisms (from bacteria to algae and molluscs). The strong predominance of pelagic organisms and the scarcity of benthic fauna suggests a deposition below the euphotic zone. Therefore, facies F1 is interpreted as characterizing distal outer shelf deposits.

Facies 2 (F 2): Facies 2 consists of shales or shaly marlstone, with some marly beds (about 20–30% of total thickness). The faunal content is dominated by belemnites, ammonites, irregular sea urchins, brachiopods (terebratulids) and plicatulids, associated with some gastropods, bivalves (mostly thin-shelled), annelids and scarce nautiloids. Isolated corals locally occur. Bioturbation consists of track molds, small sized curved burrows and digging traces (sediment feeders), mainly visible in the marlstone beds.
Interpretation: The occurrence of benthic, relatively deep water organisms (e.g. echinoids, brachiopods), together with planktonic fauna (cephalopods) suggests a hemipelagic environment. The lithological association (prevailing marl, subordinate limestone) also points to an outer shelf setting. Bioturbation is dominated by the activity of sediment feeders, suggesting an outer shelf environment and moderately oxygenated conditions.

Facies 3 (F 3): Facies 3 is made of marly limestones (about 30–50% of total thickness) with marly interbeds. The faunal content is dominated by bentic organisms, such as brachiopods, annelids and bivalves, among which ostrea, plicatulids, pectinids and thick-shelled large bivalves. Ammonites occur commonly. Bioturbation dominantly consists of burrows (curved and straight) and track molds.

Interpretation: The predominance of a diversified bentic fauna indicates a shallow, open marine environment, while the abundance of limestone suggest the proximity of the “carbonate factory” and hence, of a carbonate platform. However, the lack of algae and of very shallow organisms or features (e.g. oncolites, rudistids, corals) precludes a very shallow environment. The dominance of burrows and surficial track molds supports the interpretation of a shallow (proximal) open shelf environment.

Facies 4 (F 4): This facies is lithologically marked by thick, massive limestone beds, containing shallow marine bentic bi-valves, such as abundant oysters, some trigonids and scarce rudistids. Bioclasts are common and belemnites may occur at the top of these beds. Bioturbation is represented by burrows. The top of these beds is locally karstified (see surface S1, below).

Interpretation: The predominance of a shallow marine bentic fauna indicates a shallow carbonate shelf environment. Evidence of frequent emergence at the top of these deposits support this interpretation. The presence of bioclasts suggests a moderate energy environment, which is supported by the predominance of suspension feeders. F4 sediments are thus interpreted as deposited in a well oxygenated, shallow to very shallow carbonate shelf environment, with moderate energy.

4.2.2. Uppermost Aptian–Albian facies (Fig. 3)

Facies I (F I): Facies I is made up of monotonous, dark-coloured, almost azoic shales or shaly marlstones. Long searches on these outcrops allowed only to find scarce ammonite casts.

Interpretation: The lack of fauna and sedimentary structures makes any reliable interpretation difficult. However, as this facies usually overlies or underlies the F1 facies, is devoid of bentic fauna, and occurs at the top of the studied sections, it is interpreted as a pelagic, deep water marine deposit.

Facies II (F II): Facies II is very comparable to the F 1 facies, and consists of silty shales or silty shaly marlstone, containing mainly belemnites and some ammonites. Sandstone beds are virtually absent (less than 5% of the total thickness). Scarce thin-shelled bivalves, annelids, plicatulids, small sized gastropods and brachiopods (mostly rynchonellids) occur sporadically. Because of the shaly nature of the deposits, bioturbation seems to be absent, except in the sandstone or marlstone beds, where digging tracks dominate.

Interpretation: The lack, or scarcity, of carbonate suggests that sedimentation took place far from the carbonate factory, i.e. in a distal place, if the carbonate content is due to export from shallow water deposits. The strong predominance of pelagic organisms and the scarcity of benthic fauna support a deposition depth below or near the lower limit of the euphotic zone. Therefore, facies F II is interpreted as a hemipelagic deposit, in a distal outer shelf environment, and is thought to be roughly equivalent to the F 1 facies.

Facies III (F 3): Facies III is made of shales or shaly marls, with thin beds of sandstone or sandy marl (about 30% of the total thickness). The faunal content is dominated by belemnites, ammonites and brachiopods (mostly terebratulids), associated with some gastropods, plicatulids, and thin-shelled bivalves. Bioturbation in the sandstone beds consists of small sized curved burrows and digging traces (sediment feeders).

Interpretation: The occurrence of benthic, relatively deep water organisms (e.g. brachiopods, plicatulids), together with planktonic fauna (cephalopods) suggests a hemipelagic environment. The lithological association (prevailing silty to sandy marlstone) also points to an outer shelf setting, comparable to that of Facies F 2. However, the presence of sediment feeders, even in the sandstone beds, suggests that sea bottom waters were less oxygenated than in Facies 2.

Facies IV (F 4): F IV consists of yellow, dolomitic, well-sorted sandstone beds, usually separated by silty to marly interbeds. The faunal content is dominated by bentic organisms, such as brachiopods (terebatulids) and bivalves, among which gastropods, oysters, plicatulids, pectinids and other bivalve fragments. Ammonites and belemnite fragments are common. Sedimentary structures such as current ripples and cross-bedding are also common. The lower part of the dolomitic sandstone beds is commonly rich in varied reworked elements: phosphatic fragments, internal molds of gastropods or ammonites, brachiopods, lithoclasts and belemnite rostra. Bioturbation consists of burrows (curved and straight), track molds and digging traces. F IV commonly overlies erosional surfaces, below described as S 4.

Interpretation: The predominance of a diversified benthic fauna indicates an open marine environment. The occurrence of current-related structures indicates a moderate to high energy during deposition, which is supported by the good sorting of sandstone grains. The abundance and diversity of bioturbation, as well as the energetic conditions, support the interpretation of a shallow (proximal) outer shelf environment, probably above the wave base. When F IV deposits overly S 4 surfaces, they are interpreted as resulting from the decreasing intensity of submarine currents responsible for the erosional surface. As these currents decrease, they allow deposition of sandstones, mixed with reworked elements, both brought out from the underlying, eroded strata. When F IV does not overly S 4 surfaces, it may be interpreted as storm deposits, resulting from an abrupt detrital supply derived from littoral areas, possibly related to river floods, or resulting from high frequency relative sea-level drops.

Facies D (F D): Facies F D is characterized by a poor faunal diversity, together with the high abundance of one type of organism, usually annelids (serpulids) or bucheidae bivalves (e.g. *Aucellina* sp.). F D is usually associated with monotonous shales or shaly marlstones, or with alternating marlstone/silty marlstone and marlstone/sandstone, with predominance of marlstones or silty marlstones (lithologies of F 1, F 2, F II or F III). Bioturbation is sparse, but this may be due to the shaly lithology. Pyrite is commonly abundant.

Interpretation: The poor faunal diversity, the presence of pyrite and the predominance of organisms tolerating oxygen-depleted environments (bucheidae, serpulids, *De la Mora et al., 2000; Henderson, 2004*) point to dysaerobic conditions. However, the occurrence of scarce bioturbation indicates that bentic life was still possible, and therefore, that conditions were not anoxic. Because of the scarcity of other fauna, the depositional environment is difficult to assess precisely, and it will be interpreted based on the lithology. For this reason, the dysaerobic facies (F D) will be named based on their lithology, for instance F 2D or F I D. In all
cases, in the studied sections, F D is of restricted to outer shelf environments.

4.3. Peculiar sedimentary surfaces

Surface 1 (S 1): The first type of surface is usually found on top of a massive limestone bed. It is an uneven, corroded surface, the cavities of which are filled by the overlying highly glauconitic deposits, or by iron oxides (see below) (Fig. 4A,B). The centimeter-scale cavities may penetrate in the limestone beds as much as several tens of centimeters deep. In the upper surface of the bed, the calcite of bioclasts has been locally dissolved and is replaced by iron oxides, iron-rich dolomite or by glauconitic-rich sediments.

Interpretation: S1 is interpreted as a karstified surface, which indicates a period of subaerial exposure and explains the dissolution by meteoric water. S1 is, therefore, interpreted as a sequence boundary (SB). It is only found at the base of the studied sections (i.e. in lower Aptian deposits), and mainly in the southern part of the basin, where several S 1 surfaces may be amalgamated. In the latter case, reworked ammonites of different ages suggest large time gaps.

Surface 2 (S 2): The second type of surface is represented by a thin layer of highly glauconitic, sometimes phosphatic deposits that commonly form a crust. It commonly contains lithoclasts, fossils and bioclasts (oysters, brachiopods, gastropods, belemnites, ammonites) of various nature and origin. It may fill the karstic cavities and depressions of S1, or form a distinct layer. In some cases, large lithoclasts are bored (Fig. 4C).

Interpretation: S 2 is thought to represent a condensed deposit, resulting from a submarine hiatus. The occurrence of a variety of organisms living in shallow to moderately deep environments suggests that condensation partly occurred in a shallow marine environment. This is supported by the local presence of bored clasts, boring being restricted to shallow marine environments and being common in tidal environments. However, the presence of glauconite and phosphate suggests that at least part of the condensation occurred in an outer shelf environment, likely related to mineralised, deep water currents. S 2 is, therefore, interpreted as related to a transgressive episode. S 2 is usually found at the base or at the top of the studied sections, and only in the western part of the basin.

Surface 3 (S 3): Surface 3 is marked by a thin, discontinuous, iron-rich crust, which covers the upper surface of marly or calcareous beds (Fig. 4D). It is locally associated with some small-sized lithoclasts, and concentrations of pelagic fauna (cephalopods). It is mainly recorded in the upper Aptian deposits.

Interpretation: S3 is interpreted as a hard ground representing a submarine hiatus, likely related to marine currents. In upper Aptian deposits, S 3 commonly laterally evolves to S 4 surface (submarine erosion, see below). In this case, S 3 is interpreted as resulting from the mineralization by submarine currents of a hard bed (carbonate marlstone or limestone) that resisted to the submarine erosion, the latter having removed the underlying shales and being still active elsewhere. In the western, condensed sections, S 3 may be merged with S 1 or S 2 surfaces.

Surface 4 (S 4): An other type of surface is found at the base of high concentrations of belemnites rostra associated with lithoclasts, flat pebbles, phosphatized white internal molds of fossils (commonly gastropods and ammonites) and scarce other bioclasts (Fig. 4E and F). These elements can be found, either as coquina layers within a marly shale succession (S 4A), or reworked at the base of, or within, limestone or calcareous
sandstone beds (S 4B) (see Fig. 5). In the first case (S 4A; Fig. 4F, and D4 in Ida w Shayq section on Fig. 5), these coquinas are frequently lenticular in shape, since they overlie a slightly uneven surface, and may be associated with fine-grained sand. Where the coquina is lacking, S 4 may be only marked by a slight lithological change, associated with an upward change in the faunal content, from pelagic organisms to assemblages including benthic species. In the second case (S 4B; Fig. 4E), clasts, bioclasts and molds are concentrated at the base of the overlying bed, and rapidly disappear upward. S 4 occurs in the uppermost Aptian and lower Albian succession.

Interpretation: S 4 may be interpreted in two distinct ways. In the most common case, the reworked faunal assemblage, as well as the overlying one, contain pelagic organisms. Such an erosional

![Fig. 4. Types of sedimentary surfaces in the Essaouira-Agadir basin. A. Karsted surface S1 (D1, Takoucht section). B. Glauconitic infilling of a karstic cavity on a S1 surface (D1, Addar section). C. Bored rounded clast in a phosphatic conglomerate (S2 surface, Tamri section). D. Iron oxide rich crust (S3 surface, D3, Addar section). E. Concentration of belemnites and plicatulids and gastropod shells at the base of a dolomitic sandstone bed (S4B surface) (D4, Taounerine section). F. S4A surface marked by a concentration of brachiopods and plicatulids shells in a marly succession (D4, Ida w Shayq section).]
surface is interpreted as representing a submarine hiatus, associated with erosion of the underlying marlstone or shale, related to relatively strong submarine currents. In this interpretation, the submarine erosion would have removed the small-sized sedimentary particles (shale, marlstone), thus bringing up and concentrating their detrital and pelagic faunal content. The frequent occurrence of phosphatic internal molds of organisms suggests that upwelling currents played a role in this erosion and allowed phosphatization of carbonate elements during the erosional hiatus. However, since the S 4 surface is always found at the top of shaly or marly series, the occurrence of erosion periods cannot be ruled out for some of these surfaces. As a matter of fact, on one hand, the overlying bed may contain shallow water fauna (oysters, trigonids, corals), and on the other hand, shale or marlstone cannot be karstified, and possible evidences of subaerial erosion (e.g. paleosoils, fluvial or eolian sands, etc.) may have been eroded, and removed or reworked by the overlying, transgressive high-energy deposits.

4.4. Calciometry and rock-eval pyrolysis

For all successions, calcium carbonate values are higher in the Aptian than in the Albian deposits, with values generally comprised between 40% and 90% up to the end of the A. nolani ammonite Zone. Close to the Aptian–Albian boundary, the calcium carbonate content sharply decreases, and remains low or slightly decreases through early Aptian times (Fig. 6).

In the Takoucht section, the 25 analyzed samples contain between 0.2 and 1.5% TOC, with an average of 0.7%. There is no clear relationship between TOC% and CaCO3% (Fig. 6), which suggests that the uppermost Aptian and lowestmost Albian (between D3 and D5); in both Tamzergout and Anzate the absence of data below this interval does not allow to observe this trend (Fig. 7). Above D5 (D. mammillatum Superzone), the relative abundance of meso-eutrophic taxa decreases (Fig. 7). In all sections except Tinfoul, an increase in the relative abundance of cold taxa is recorded from the upper Aptian to the lower Albian, and the Anzate section shows higher percentages than the other ones (Fig. 7). The relative abundance of the largest nannofossil calcite, Nannoceras spp., decreases from the upper Aptian to the lower Albian (Fig. 7). The proximal Tinfoul section presents both the lowest Nannoceras spp. percentages and calcium carbonate contents (Fig. 6).

5. Interpretations

5.1. Aptian–lower Albian depositional sequences

The identification of facies and discontinuity surfaces allowed us to define eight depositional sequences in the Aptian–lower Albian interval (~15 Ma).

The first sequence (<10 m) is only developed in the northern part of the EAB. In Ida w Shayq and Smimou, its lower part yielded latest Barremian ammonites (M. sarasini ammonite Zone, Jaillard et al., 2019), whereas the upper part contains ammonites from the D. deshayesi Zone at Smimou, Ida w Shayq and Aouljkjad. Its lower limit (D 0, Figs. 5, 8–10) is an S 1–type, karstified surface. At Ida w Shayq, parts of the section are covered, and it is possible that this sequence includes an additional, unobserved discontinuity. The lower, transgressive part of the sequence is dominated by marlstone and sandstone beds rich in oysters, with subordinate pectinids and trigonids. The middle part contains irregular oysters, associated with ammonites, oysters and serpulids, while the marly to calcareous upper part yielded mainly ammonites and brachiopods. Its top is usually represented by a remarkable accumulation of cheloniceratids (« Cheloniceras bed »), locally exhibiting karstic dissolution (Ida w Shayq). These features indicate an overall transgressive trend for the sequence. In the southern sections, this sequence may be represented by the undated infilling of karstic cavities related to amalgamated emersion surfaces. This sequence seems to roughly coincide with the Tamzergout Fm of Rey et al. (1988) and Wittam (1998).

The second sequence (<11 m) is mainly observed in the northern part of the basin. In the Ida w Shayq section, it yielded late early to early late Aptian ammonites (D. deshayesi ? to E. murtini zones). Its lower boundary (D 1, Figs. 5, 8–10) is an S 1 surface in Takoucht, Ida w Shayq and Aouljkjad. There, it is marked by a thinning upward succession of limestone beds. Whereas the lower part is dominated by ammonites and brachiopods, the shaly upper part mainly contains plicatulids and scarce ammonites. This evolution is interpreted as a mainly transgressive succession, the regressive part of the second sequence being eroded below the

nannofossils and/or contain very rare nannofossils (Fig. 7). The means of the nannofossil total absolute abundance are higher in the distal sections of Addar (0.57 ± 10^3 specimens per gram of rock), Ida w Shayq (0.43 ± 10^3), Tiskatine (0.35 ± 10^3) and Tamzergout (0.33 ± 10^3), with respect to the more proximal sections of Anzate (0.18 ± 10^3) and Tinfoul (0.13 ± 10^3). A progressive decrease in the nannofossil total absolute abundance is recorded through the Aptian–lower Albian interval, except for the Ida w Shayq section, which shows a sharp decrease around the Aptian–Albian boundary (Fig. 7). The mean relative abundance of meso-eutrophic taxa is comprised between 17.8 (Ida w Shayq) and 28.6% (Addar), which represent relatively high values. The relative abundance of meso-eutrophic taxa follows an opposite trend with respect to the nannofossil total absolute abundance, since it generally increases in the uppermost Aptian and lowermost Albian (between D3 and D5);
Fig. 5. North-South correlations of some Aptian–lower Albian sections of the Essaouira-Agadir basin.
Fig. 6. Stratigraphic changes in calcium carbonate content and relative abundances of *Nannococcos* spp. for the different sections. For the Takoucht section, the TOC is added. The sedimentary discontinuities (D0–D7) are indicated.
upper discontinuity surface. In the Tiskatine and Aoulkjdad sections, it is represented by a monotonous marlstone-limestone alternation, rich in plicatulids, belemnites and ammonites. This sequence commonly ends with a limestone bed rich in large ammonites ("Tropaeum" bed). In the southern sections, the second sequence is usually represented by a massive limestone bed intercalated between two erosion surfaces (S 1), whereas it is lacking in the easternmost section (Tinfoul, Fig. 8).

The third sequence (<14 m) is recorded in all sections. It yielded early late Aptian ammonites (E. martini, to base of A. nolani zones). Its base (D 2, Figs. 5, 8–10) is locally a S 4B surface, consisting of a limestone bed rich in phosphatized fossils (Addar, Ida w Shayq). Elsewhere, the base of the sequence is placed at the top of the "Tropaeum" bed (S 3 surface). This sequence comprises a first thinning-upward, then thickening upward alternation of shaly and calcareous marl beds. The fauna is dominated by belemnites, ammonites and plicatulids, which are associated with oysters at the base, irregular urchins in the middle part, and brachiopods at the top of the sequence. This faunal evolution supports a deepening-upward, then shallowing-upward trend. In all sections, its top is clearly marked by a noticeable marly limestone bed extremely rich in Nolani ("Nolani" bed). The second and third sequences appear to correspond to the Tadhart Fm (Rey et al., 1988; Witam, 1998).

The fourth sequence (<5–30 m) crops out in all sections. It is well dated by latest Aptian ammonites (A. nolani to H. jacobi zones). Its base (D 3, Figs. 5, 8–10) is locally marked by a slightly erosional sandy bed (Anzate Alma, Tamzergout, Takoucht). At Aoulkjdad, it consists at the base (S 4B) of a bed rich in phosphatized ammonites and bioclasts. Elsewhere, it is marked by the oxidized top of the "Nolani" bed (S 3). In Takoucht, a low angular unconformity can be seen between the sandstone bed (S 4 surface) and the "Nolani" bed (S 3 surface), thus evidencing submarine erosion, which took place during the hiatus causing the sequence boundary (Fig. 10). The fourth sequence is usually a thinning-upward, mainly marly succession, rich in ammonites, belemnites and plicatulids. According to the sections, thin sandstone beds are present (Addar, Anzate, Taounerine), some ammonites are pyritous (Anzate, Taounerine), and calcareous beds appear in the upper part of the sequence (Ida w Shayq), illustrating a progradational trend. The presence of numerous Aucellina sp. and of abundant pyrite suggests reducing conditions, which represent the equivalent of one of the upper Aptian anoxic events known in southeastern France (Kennedy et al., 2014 and references therein). This sequence is correlated with the Lemgo Fm of Rey et al. (1988) and Witam (1998).

In Tamzergout, the Aptian–lower Albian succession is thicker than elsewhere, and the more complete ammonite succession suggests that an additional sequence (12 m) is preserved below the major discontinuity of the Aptian–Albian boundary (D 4, Fig. 8). If so, this would imply on one hand that subsidence was higher in this area than in other areas, and on the other hand that the overlying unconformity surface is strongly erosive, as this sequence is not recorded elsewhere.

The fifth sequence (<35 m) is well represented in all studied sections. It yielded numerous ammonites, which ensure an earliest Albian age (L. tardefurcata Zone). The lower sequence boundary (D 4, Figs. 5, 8–10) is a typical S 4B surface at the base of a reworked bed, reflecting strong erosion. Among the reworked bioclasts in the basal sandy bed, the presence of corals (Addar), pectinids (Tamzergout), oysters (Tiskatine, Takoucht) or regular urchins (Ida w Shayq) suggests a shallow marine environment. Therefore, the occurrence of subaerial erosion related to a significant sea-level drop cannot be ruled out for this sequence boundary, which encompasses the Aptian–Albian boundary time-span. An emersion period during D 4 is supported by the fact that sequence 4 is locally deeply eroded, with its thickness varying between 30 m (Tamzergout) and 5 m (Anzate) in the South (Fig. 8), and between 4 m (Aoulkjdad) and 11 m (Taounerine) in the center of the basin (Fig. 9). The fifth sequence is mainly made of shaly marlsstone, containing belemnites, ammonites and plicatulids, although oysters, brachiopods, pectinids and annelids may occur as well. This sequence is locally rich in bivalves (Aucellina sp.) (Takoucht, Aoulkjdad), especially in its upper part (Tinfoul, Tiskatine), suggesting dysaerobic conditions (e.g. Henderson, 2004).

Due to poor outcrop conditions, the identification of the sixth and seventh sequences are still preliminary. The ammonite content of the sixth sequence (<20 m) indicates an early Albian age (upper L. tardefurcata Zone and D. mammillatum Superzone p.p.). In all sections, the lower sequence boundary (D 5, Figs. 5, 8–10) is a S 4B surface. Beside pelagic fauna, the strata overlying D 5 contains a molluscan fauna (brachiopods, pectinids, plicatulids) not as shallow as those overlying D 4, and frequent phosphatized internal molds. Therefore, D 5 may correspond to a submarine erosion period. The fauna is dominated by belemnites, serpulids and plicatulids; some flat ammonites ("Beudanticeras beds") are present in the lower part, and Aucellina sp. and serpulids are quite abundant in some sections (Tiskatine, Aoulkjdad, Takoucht, Tamzergout). The latter indicate a clear dysaerobic environment, which may be an equivalent of the organic-rich deposits of the coeval "Niveau Paquier" of southeastern France (Kennedy et al., 2000). The top of the sequence is marked by the increase of sandy beds, suggesting the progradation of a coastal clastic system.

The seventh sequence (<30 m) has been identified only in the Tamzergout, Tiskatine, Aoulkjdad and Takoucht sections. Its poor ammonite content indicates an early Albian age (D. mammillatum Superzone p.p.). The lower discontinuity (D 6, Figs. 8 and 9) is an erosional surface (S 4B) overlain by a sandstone bed containing phosphate clasts. Sequence 7 consists of sandy/silty marls with abundant sandy limestone and sandstone beds. The fauna is similar to that of the sixth sequence (plicatulids, serpulids, belemnites, Aucellina sp., scarce large bivalves). In Tinfoul and Anzate, this sequence is probably present but has not been differentiated from the sixth sequence (Fig. 8). The thickness of the sequence and the amount of detrital quartz and sandstone beds seem to increase toward the North and East (Tinfoul, Aoulkjdad, Takoucht).

An eighth sequence is locally partly visible (Addar, Tiskatine, Aoulkjdad, Tamzergout). Its lower boundary (D 7, Figs. 5 and 7) is an S 4B surface. The sandstone bed overlying D 7 contains wood remains, ostreids, frequent lithoclasts, and locally presents parallel laminae and Hummocky Cross Stratification, which suggest a very shallow depositional environment. These features suggest that D 7 may correspond to a subaerial erosion period. This interpretation is substantiated by common plant remains in the abundant sandstone beds of the underlying sequence 7, which suggest the proximity of emergent land. Scarce and little diversified ammonites indicate an early Albian age. The rare faunal content comprises ammonites, belemnites, plicatulids and serpulids in the sandstone beds, and Aucellina sp. in the sandy, marly shales. Together with the apparent scarcity of bioturbation, this suggests ongoing dysoxic conditions. The overlying shales are frequently covered. The fifth to eighth sequences constitute the lower part of the Oued Tidzi Fm (Duffaud et al., 1966).

5.2. Comparison with other areas

Although the Aptian period has been extensively studied for paleoenvironmental and paleoceanographic conditions (e.g. Sabatino et al., 2015, and references therein), relatively few works
Fig. 7. Stratigraphic changes in calcareous nannofossil total absolute abundance and relative abundances of both meso-eutrophic and cold taxa. The sedimentary discontinuities (D0–D7) are indicated.
Fig. 8. East-West correlations of the Aptian–lower Albian sections in the southern part of the Essaouira-Agadir basin. D: dysaerobic facies. See Fig. 10 for caption, and Fig. 3 for explanation of 1–4, and I–IV.
are available on the sequence stratigraphy of this stage. A SB of latest Barremian age (within the *Martellites sarrasini* Zone) has been identified in southern (Ruiz-Ortiz and Castro, 1998) and northern Spain (Bover-Arnal et al., 2009), and in the Urgonian platform of the Swiss and French Prealps (Arnaud et al., 1998; Clavel et al., 2013; Tendil et al., 2018), which correlates with our D0. Some authors mentioned a first lower Aptian SB around the limit between the *Deshayesites oglanlensis* and *D. forbesi* ammonite zones (Bover-Arnal et al., 2009; Martín-Martín et al., 2013; Tendil et al., 2018), and a second one between the *D. forbesi* and *D. deshayesi* zones (Ruiz-Ortiz and Castro, 1998; Arnaud et al., 1998; Raddadi, 2004; see also Embry et al., 2010). Because of common condensation and poor sedimentary record, none of these discontinuities has been recognized confidently in the EAB, most probably due to the low sea level globally recorded in earliest Aptian times (e.g. Haq, 2014). A third lower Aptian SB has been dated as close to the *D. deshayesi-Dufrenoyia furcata* ammonite zones boundary (Martín-Martín et al., 2013; H. Arnaud, pers. comm., 2014), which may be correlated with D1, D2, dated as close to the early—late Aptian boundary (*D. furcata-Epicheloniceras martini* zones) is probably coeval with the SB identified in Spain (Bover-Arnal et al., 2009; Embry et al., 2010; Martín-Martín et al., 2013) and in south-eastern France (H. Arnaud, pers. comm., 2014; Pictet et al., 2015). The SB identified in Spain within the *E. martini* and *Parahoplites melchioris* zones (Ruiz-Ortiz and Castro, 1998; Bover-Arnal et al., 2009; Martín-Martín et al., 2013) has been recognized neither in the EAB, nor in southern France (Raddadi, 2004; Clavel et al., 2013). The D3 identified in the EAB is located within the *Acanthohoplites nolani* Zone, and therefore, is correlatable with the SB identified in southern Spain (Ruiz-Ortiz and Castro, 1998), while D4 seems to be correlatable with the SB identified in the late *Hypacanthoplites jacobi* Zone in Spain (Ruiz-Ortiz and Castro, 1998; Bover-Arnal et al., 2009; Martín-Martín et al., 2013) and Tunisia (Chihaoui et al., 2010; Latil, 2011; Hfaied et al., 2013). D4 of the EAB, the erosional surface of which contains the Aptian—Albian boundary, is easily correlatable with the base of the Hameima Fm in Central Tunisia (Chihaoui et al., 2010; Latil, 2011; Hfaied et al., 2013). D4 of the EAB, the erosional surface of which contains the Aptian—Albian boundary, is easily correlatable with the base of the Hameima Fm in Central Tunisia (Chihaoui et al., 2010; Latil, 2011; Hfaied et al., 2013). D4 of the EAB, the erosional surface of which contains the Aptian—Albian boundary, is easily correlatable with the base of the Hameima Fm in Central Tunisia (Chihaoui et al., 2010; Latil, 2011; Hfaied et al., 2013). D4 of the EAB, the erosional surface of which contains the Aptian—Albian boundary, is easily correlatable with the base of the Hameima Fm in Central Tunisia (Chihaoui et al., 2010; Latil, 2011; Hfaied et al., 2013).
5.3. Calcareous nannofossil primary productivity and carbonate production

The nannofossil total absolute abundance depends on primary productivity in the water column, preservation, and sedimentation rate. Significantly lower nannofossil total absolute abundances are observed in Albian than in Aptian strata in samples with different preservation states (poor to good; Fig. 7) and thus do not result from a poor preservation. The decrease in nannofossil total abundance is associated with an increase in the relative abundance of high-fertility nannofossils indicators, which seems contradictory. Indeed, both high nannofossil total abundances and relative abundances of high-fertility taxa can be related to a high primary productivity in marine surface waters. The Aptian lower parts of the sections are more condensed with respect to the lower Albian upper parts, and the change to higher sedimentation rates occurs above D4. Thus, the decrease in nannofossil total absolute abundances recorded in all sections through early Albian times may be explained by an increase in the sedimentation rate, with a dilution effect by the siliciclastic fraction. During the early Albian, enhanced relative abundances of high-fertility taxa suggest an increase in the nannofossil primary productivity.

In a carbonate ramp setting such as the EAB, carbonate production may result from benthic fauna and/or from pelagic organisms, such as calcareous nannofossils. We have investigated more in detail the relationship between nannofossil total abundance and calcium carbonate content. When all data from the different sections are plotted, a correlation exists between these two variables, but remains unclear, especially for high values of calcium carbonate content (>70%) corresponding to Aptian samples (Fig. 11). If the latter values are not taken into account, a low positive correlation (r = 0.343, with 162 values and p < 0.0001) is observed. This suggests that on the EAB ramp, the carbonate fraction was partly produced by calcareous nannofossils, especially in sediments with values of calcium carbonate content lower than 70%.

The carbonate production was lower for the lower Albian deposits in comparison to the Aptian deposits in the EAB. This is shown by a decrease in the carbonate content starting around D4 (Fig. 6), by a decrease in both semi-quantitative abundance and diversity of shallow marine benthic fauna, and by a decrease in the relative abundances of the bigger calcareous nannofossil calcifier such as *Nannoconus* spp (Fig. 6). The latter is considered as a deep dweller, which is more abundant in marine paleoenvironments with prevailing oligotrophic sea-surface conditions (Table 2). In carbonate oligotrophic environments, the photic zone is supposed to be thicker than in siliciclastic environments, leading deep dweller to develop. This explains that nannoconids 1) are less present in the proximal, more siliciclastic environment of Tinfoul with respect to the other sections, and 2) are much more abundant in the upper Aptian carbonate-rich deposits corresponding to low fertility surface waters, with respect to the more siliciclastic deposits that prevailed during the early Albian. Nannoconids are also associated with warm marine paleoenvironments (Table 2). Decrease in their relative abundance in the uppermost Aptian—lower Albian interval may indicate cooler sea-surface temperatures. As a matter of fact, the significant increase in the relative abundance of cold water
nannofossil taxa in the uppermost Aptian, and overall in the lowermost Albian, suggests that cooling occurred, but may be also due to connections with higher latitudes, linked to the recorded sea-level rise. However, connections with higher latitudes cannot explain the decrease in the relative abundance of warm water nannofossil taxa, such as nannoconids. In most of the studied sections the maximum relative abundance of cold water taxa is reached in the early D. mammillatum ammonite Superzone. Such sea-water temperature cooling in the late Aptian and earliest Albian is consistent with previous studies in other Tethyan areas (e.g. Bottini et al., 2015; Bodin et al., 2015), although other authors advocated for an ongoing warm climate in parts of the Tethyan realm (see discussion in Föllmi, 2012).

5.4. Dynamics of the EAB in Aptian–early Albian times

5.4.1. General statement

Deposition during the Aptian–early Albian was marked in the EAB by an overall low energy environment, as documented by the lack of oolites, coral reefs or grainstone textures. Additionally, the abundance of pyrite in marls, together with the abundant bichidae, suggests that bottom waters were little oxygenated in the middle to distal areas. Facies successions are monotonous and lateral changes are quite gradual. These observations call for a very low-sloped, even ramp topography. The lack of high-energy deposits is probably favoured by the geographic location of the EAB on the western side of a continent. As a matter of fact, in the northern hemisphere, storms are formed in intertropical latitudes and shift first toward the West, due to the trade winds, and then to the North, because of the Coriolis deviation, thus affecting the eastern or southern coasts of the continents. Since the EAB is located on the northwestern margin of Africa, storms were probably scarce, thus favoring a low energy regime and possibly water stratification. Coastal upwelling enhanced by the westward trade winds might have favoured biological activity, resulting in little oxygenation of bottom water in the outer ramp and organic-rich deposition shoreward.

On the other hand, during the late Aptian–early Albian interval, the faunal assemblages were dominated by brachiopods, oysters, plicatulids, pectinids and other bivalves, as well as serpulids, gastropods and irregular urchins. Conversely, they are almost devoid of oolites, oncolites, stromatolites, corals, rudistids and algae. This suggests that, in spite of its intertropical latitude (15–20° lat. N; e.g., Trabucho-Alexandre et al., 2011), the EAB behaved as a temperate platform, at least during late Aptian and early Albian times.

The occurrence of phosphate- and glauconite-rich crusts or clasts suggests that the EAB was submitted to cold, upwelling currents, as documented by Leckie (1984), Herrle et al. (2004), Haydon et al. (2008) and Hofmann et al. (2008) along the Moroccan margin. This interpretation is supported, on one hand by the abundance of glauconite and phosphate clasts in upper Aptian to lower Albian deposits. On the other hand, the westernmost areas (Tamri, Assaka, Imsouane; Figs. 1 and 9) exhibit very condensed sections, where 50 cm-thick, glauconite- and phosphate-rich conglomerates contain ammonites of early Aptian to earliest Albian age. Such a condensation may be attributed to significant, continuous upwelling currents affecting the western edge of the ramp during Aptian to earliest Albian times.

5.4.2. Comparison between Aptian and latest Aptian–early Albian environments

Albian facies differ from the Aptian ones by the abundance of clastic input. A high carbonate production is favoured by a large photic zone, few terrigenous influx, warm sea-surface conditions and slow rise of sea level. Albian facies differ from the Aptian ones by the abundance of detrital input. Aptian deposits comprise marls and limestones, with few, fine grained detrital quartz. Conversely, Albian sedimentation is marked by silty marls and shales, and sandstones. This provoked a change in the overall faunal content. As a matter of fact, pectinids and irregular sea urchins, common in the Aptian beds, are much scarcer in lower Albian deposits, whereas oysters and plicatulids are much more abundant in the latter. In the same way, scarce corals are present in the Aptian succession but are totally absent in the lower Albian series. Although the development of oysters from Albian times onward is a widespread feature that may be related to a global sea-level rise (Dhondt et al., 1999), this suggests also that the lower Albian environment is marked by more important terrigenous sediment supply (local occurrence of plant fragments), and associated nutrients input to the basin, which led to both a reduction of the photic zone depth, and a change from oligotrophic to mesotrophic conditions, illustrated both by increasing calcareous primary productivity and the faunal change. Increasing terrigenous supply was probably caused by enhanced runoff from the emergent continents during more humid climatic conditions. However, the highest nannofossil primary productivity conditions are recorded above D4 (L. tardefurcata and lower D. mammillatum ammonite Zones), which corresponds to a period of sea-level rise. Therefore, increasing nutrient content could also be due to upwelling conditions developing over the platform during sea-level rise and high sea-level periods.

The average deposition depth seems to have been higher in the early Albian than during the Aptian. During the latter period, the deposition depth varied between 0 m (S 1) and little below the lower limit of the euphotic zone (F 1), whereas in the early Albian, deposition depth varied from the fair weather wave base (F IV), to largely below the euphotic zone (lack of benthic macrofauna in F I). However, this qualitative assessment may be exaggerated, as the more important detrital sediment supply during the early Albian might have reduced the thickness of the photic zone because of repeated clay input into the basin. Therefore, we cannot rule out that facies F II and F III may have been deposited in environments equivalent to, or slightly shallower than, facies F 1 and F 2, respectively.

The average energy level that prevailed during deposition of the lower Albian succession was higher than during the Aptian, as shown by the occurrence in the lower Albian succession of erosional surfaces, dolomitic sandstone beds and current structures in the latter. Since many of these beds overlie erosional surfaces and
thus correspond to drops in sea level, this suggests that these high energy deposits were sedimented in an environment shallower than the storm wave base, or even shallower than the fair weather wave base. This supports the fact that the average deposition depth remained moderate, even during the early Albian.

Finally, the F D facies are restricted to the lower Albian succession, which suggests that the EAB ramp was more oxygen-depleted at that time, than during the Aptian. Two causes may be invoked. On one hand, the O₂ depleted zone may have been too deep to reach the Moroccan ramp during the Aptian, whereas, the higher deposition depth during the early Albian allowed the O₂ depleted zone to reach and impinge upon the EAB. On the other hand, the influence of upwelling currents may have favoured the marine life in the outer zones of the ramp, consuming a part of the available oxygen through biological activity and organic matter degradation, thus favoring the extension of the O₂ depleted zone onto the EAB ramp (e.g. Erbacher et al., 1996; Haydon et al., 2008). One of these O₂ depleted deposits may have been coeval with the OAE1b, since it occurred in Tamzergout during the L. tardefurcata ammonite Zone (Peybernès et al., 2013), and has been recognized in Takoucht at the same level (Figs. 5 and 10). There, TOC measurements indicate fluctuations around 1% TOC, but due to the lack of other TOC analysis in other intervals, no comparison can be made.

5.5. Paleogeographic and tectonic evolution

During latest Barremian to earliest late Aptian times (Sequences 1 and 2, M. sarasini to E. martini p.p. ammonite Zones), the western, southern and eastern areas of the basin are marked by repeated emersions (numerous karstic and epikarstic cavities), which likely produced erosions of part of the previous deposits. As a consequence, Sequences 1 and 2 in these areas are absent or extremely

Fig. 12. Paleogeographic and isopach maps of the study area. A. Sequences 1 and 2 (latest Barremian—early Aptian); B. Sequence 3 (early late Aptian); C. Sequence 4 (latest Aptian); D. Sequence 5 (earliest Albian).
reduced. In many sections, however, the occurrence of ammonites shows that marine sedimentation sporadically occurred. Significant carbonate sedimentation only took place in the central part of the EAB (Fig. 12A). This pattern seems inherited from the latest Barremian paleogeography, during which only in the central part of the EAB accumulated a significant thickness of fine-grained marine sandstone (= 5 m), while the western and southern part of the area where submitted to subaerial to submarine condensation (Jaillard et al., 2019). It suggests that the western and southern parts of the EAB were slightly uplifted with respect to the central part around the Barremian–Aptian boundary.

During late Aptian and early Albian times (Sequences 3 to 5), an increase of the depositional depth is recorded by the eastward retrogradation of the sedimentary facies. Shallow marine carbonates were dominant during Sequence 3 and almost disappeared during Sequence 5, whereas outer ramp deposits were absent during Sequence 3 and became predominant during Sequence 5 (Fig. 12B,D). Meanwhile, the southern coastal part of the area (Asaka, Tamri) recorded a submarine condensation (glauconites, phosphate) likely related to upwelling currents, assumed to be active offshore the Moroccan margin in Aptian–Albian times (Herrle et al., 2004; Haydon et al., 2008). Deposition resumed during earliest Albian times, since Sequence 5 is recorded in all studied sections. Note that the Tamzergout area shows a quite localized thickness anomaly, which suggests an anomalous subsidence regime.

During the early Albian, the studied outcrops are insufficient to allow detailed facies mapping. However, Sequences 6 and 7 (upper L. tardefurcata and lower D. mamillatum zones) are dominated by outer ramp facies in all areas, including in the southwestern part of the area where the long-lasting submarine condensation ended, and by more homogeneous thicknesses. The thickness anomaly of the Tamzergout area seems to have disappeared.

As a whole, the paleotopography inherited from the late Barremian tectonic event (i.e. uplift of the southern and western areas; Jallard et al., 2019) seems to be progressively leveled by the lower Aptian accumulation. However, subsidence anomalies are recorded around the present-day Amsitene and Imouzzer anticlines, which are presently underlain by evaporitic diapirs (Mhrid et al., 2000; Tari and Labour, 2013). To the north, the Amsitene anticline and its surroundings are marked by a low subsidence regime (Aptian sequences are less than 10 m thick), and to the south, the Imouzzer anticline is first uplifted (Sequences 1 and 2), and then presents an anomalously high subsidence in the Tamzergout section. This localized subsidence anomaly is most likely related to the presence of underlying evaporites, and may be due either to the formation of a rim-syncline or mini-basin located in the vicinity of a rising diapir (e.g. Gilles and Rowan, 2012; Brandes et al., 2012), or to a collapse structure above a karstic system caved in evaporites (e.g. Belderson et al., 1978; Gutiérrez et al., 2008). In the latter interpretation, the occurrence of repeated emersions may have favoured dissolution of evaporite, but the radial or concentric normal faults, commonly associated with these structures (Stewart, 2006), were not observed in the field, neither at small-scale, nor at large-scale. In the former interpretation, the absence of normal faults is frequent in rim-syncline structures, which show locally a ring-shaped morphology or are surrounded by uplifted areas above the rising diapir. These features seem consistent with our data, but more geological observations and surveying are needed to choose between these two interpretations.

6. Conclusions

Our detailed study of the Aptian–lower Albian succession of the EAB allowed to define a biostratigraphic framework, correlated with the standard ammonite zonation of Europe. In this scheme, lowermost Aptian deposits are lacking, lower Aptian strata are poorly represented, and the Aptian–Albian boundary is included within a hiatus marked by a major sedimentary discontinuity.

Careful analysis of sedimentary facies and surfaces made possible to decipher the sedimentary evolution of the EAB during Aptian–early Albian times, and to subdivide this interval into eight depositional sequences. The latter can be correlated with coeval sequences identified in other Tethyan areas, thus suggesting that they were mainly controlled by eustatic variations. In this context, the lack of the lowermost Aptian sequences is most probably related to the significant sea-level fall recorded at that time (Haq, 2014).

As a whole, Aptian–lower Albian deposits of the EAB were accumulated on a low energy ramp that evolved from a carbonate to a mixed carbonate-elastic system. This evolution occurred progressively in Late Aptian times and was associated with an increase of sandy and shaly deposits, with a change from oligotrophic to mesotrophic faunal and nannofossil assemblages, and with and increase of cold water nannofossil taxa indicating a cooling of sea-surface temperatures. Deposition depth seems to be slightly higher in the early Albian than during the Aptian, consistent with the eustatic sea-level rise recorded at that time. The more energetic environment displayed by lower Albian deposits, together with the occurrence of dysaerobic deposits and the abundance of phosphate and glauconite, suggest that upwelling currents were significant in Aptian to early Albian times.

The overall sea-level rise in the late Aptian and early Albian is illustrated by the evolving facies distribution on paleogeographic reconstructions. Furthermore, the latter evidence subsidence anomalies around the present-day anticlines cored by evaporites, thus suggesting the play of mild halokinetic movements during Aptian–early Albian times.

Acknowledgements

Most of the data presented here result from a collaborative program carried out between the universities of Grenoble, Agadir, Lyon and Marrakech, funded by the Ministries of foreign affairs from France and Morocco (PHC project n° 031/STU/13), which resulted in the achievement of a university thesis (Hassanein, 2016). We benefited from a financial support by the French Institut de Recherche pour le Développement (IRD) to W.H.K. (PhD grant) and E.J. (field trips), and from an annual financial support by the ISTerre, Grenoble, and Terre Planiétaires Environnement, Lyon laboratories, and by the OSUG@2020 Labex program of the Observatoire des Sciences de l’Univers de Grenoble. We warmly thank M. Aoutem (Agadir) for his help in field work, F. Baudin (Sorbonne Université) for TOC analysis and interpretation, and J.-L. Latil for fruitful paleontological and biostratigraphic discussions. M. Bernet (Grenoble) is thanked for revising the English text. Sincere thanks are due to Serge Ferry and an anonymous reviewer for their fair and constructive reviews.

References

