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Abstract: Global agriculture is a pivotal activity performed by various communities worldwide to produce essen-
tial human edible needs. Plant productivity is limited by several factors, such as salinity, water scarcity, and heat 
stress. Salinity significantly causes short or long-term impacts on the plant photosynthesis mechanisms by reduc-
ing the photosynthetic rate of CO2 assimilation and limiting the stomatal conductance. Moreover, disturbing the 
plant water status imbalance causes plant growth inhibition. Up-regulation of several plant phytohormones oc-
curs in response to increasing soil salt concentration. In addition, there are different physiological and biochemi-
cal mechanisms of salt tolerance, including ion transport, uptake, homeostasis, synthesis of antioxidant enzymes, 
and osmoprotectants. Besides that, microorganisms proved their ability to increase plant tolerance, Bacillus spp. 
represents the dominant bacteria of the rhizosphere zone, characterised as harmless microbes with extraordinary 
abilities to synthesise many chemical compounds to support plants in confronting salinity stress. In addition, 
applying arbuscular mycorrhizal fungi (AFM) is a promising method to decrease salinity-induced plant damage as 
it could enhance the growth rate relative to water content. In addition, there is a demand to search for new salt-
tolerant crops with more yield and adaptation to unfavourable environmental conditions. The negative impact of 
salinity on plant growth and productivity, photosynthesis, stomatal conductance, and changes in plant phytohor-
mones biosynthesis, including abscisic acid and salicylic acid, jasmonic acid, ethylene, cytokinins, gibberellins, and 
brassinosteroids was discussed in this review. The mechanisms evolved to adapt and/or survive the plants, in-
cluding ion homeostasis, antioxidants, and osmoprotectants biosynthesis, and the microbial mitigate salt stress. In 
addition, there are modern approaches to apply innovative methods to modify plants to tolerate salinity, especial-
ly in the essential crops producing probable yield with a notable result for further optimisation and investigations. 
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INTRODUCTION 

A significant, sustained debate towards the global agricultural 
sector includes producing more than 70% of the food supply 
to feed the world during the world population’s growth. 
Moreover, there is an alarming increase with 2.3–6.0 bln 
people by 2050 [CONFORTI (ed.) 2011]. To ensure food security 
and achieve the minimum level of demand for food, we should 
be aware that the required rate of increasing the productivity 
of agriculture is not only the critical approach to overcome the 
increasing rapidly population year after year but also pay 
attention to the factors that affect on this productivity [PAREEK 
et al. 2020]. The other challenge is to produce above 87% of 
the strategic food crops, especially wheat (Triticum aestivum 
L.), rice (Oryza sativa L.), maize (Zea maize L.), and others, by 
2050 [KROMDIJK, LONG 2016]. Abiotic stress is one of the 
leading severe environmental threats that restrict crop 
productivity, including salinity, water scarcity, heavy metals, 
and extreme temperatures, which cause an enormous loss in 
food production [ELSHEERY, CAO 2008; ELSHEERY et al. 2007; 
2008; 2020a, b; HELALY et al. 2017; MANTRI et al. 2012; NAUŠ 
2010]. Among these adverse stresses, soil salinity is one of the 
significant harsh environmental constraints threatening food 
security by causing harmful effects, over USD10 bln economic 
losses annually, and limiting the plant growth and 
productivity depending on the crop. Salts accumulation forms 
a notable degradation in the soil profile, which causes 
negatively affects germination, plant vigor, or crop yield, and 
loses the soil structure in the long term [FLOWERS 2004; 
MUNNS, TESTER 2008; SHABALA, CUIN 2012; TAHA et al. 2020]. 
According to high cited studies, approximately 45 mln ha 
(20%) of irrigated lands are saline [FAO 2015; SHELDEN et al. 
2016]. 

Moreover, because food consumption will rise due to 
higher living standards, food production should increase from 
35 to 57% by 2025. This serious debate encourages us to 
present this review to discuss how to improve agricultural 
strategies, control this diverse abiotic stress, and achieve 
a higher crop yield. Such unfavorable environmental condition 
has harmful consequences on the global climate changes in 
long-term exposure through its effects on plants and soil, 
which are considered the food source of plant health and 
production [BOYER 1982; CECCARELLI et al. 2010].  

Land salinisation on a global scale has always been a 
significant concern for human livelihoods, particularly in the 
food-producing agricultural industries. According to the most 
recent estimate, the perennial salinity problem has affected up 
to 900 mln ha of agricultural land worldwide, causing salinity 
stress in salt-sensitive crops and lowering productivity and 
yield [TEO et al. 2022). According to the Food and Agriculture 
Organization, more than 423 mln ha (3%) of topsoil and 833 
mln ha (6%) of subsoil are salinized in 118 nations that 
comprise 85% of the worldwide land area [LYNCH et al. 2022; 
UN Habitat, WHO 2021]. Human-induced salinization affects 
over 77 mln acres of land, with Asian regions accounting for 
70% of all human-induced salinization. Furthermore, it is 
believed that the rate of soil salinization is growing by up to 
10% each year due to several reasons such as global warming, 
agricultural management misconduct, and natural processes 
[ARIF et al. 2020; SHAHID et al. 2018]. 

In addition, several physiological and metabolic changes 
are involved in the plant based on the salinity level, duration 
of exposure, plant health, and growth stage in response to 
stress conditions [JAMES et al. 2011]. Osmotic stress directs 
cytoplasmic toxicity at high sodium, chloride, and boron is 
salinity’s most common harmful effect on plants. High salinity 
affects plants by limiting nutrients uptake and assimilation, 
i.e., K+ uptake by root cells were disrupted in the saline soil 
[ELSHEERY et al. 2020a, b; HASEGAWA et al. 2000; ELHAMAHMY et 
al. 2021; NASER et al. 2016]. Besides, Na+ stress leads to 
reduced cell division, cell metabolic changes, and oxidative 
stress; thus, arable land will be unsuitable for later use and 
poor-quality irrigation systems [JAMES et al. 2011; SHABALA, 
CUIN 2012; SUNKAR et al. 2007). Recent studies [ETESAMI, NOORI 
2019; KUMAR et al. 2021; SHRIVASTAVA, KUMAR 2015] observed 
a significant reduction in rice plants’ growth and productivity 
under soil salinity in root length, number of tillers, and grain 
yield. All the rice varieties had negatively affected by the high 
salt levels. The tallest plants were (58.5 cm), while the 
shortest (45.0 cm) were at the highest salt level  
(60 mmol∙dm–3 NaCl). Salt stress affected more than 20% of 
cultivated land worldwide [HASANUZZAMAN et al. 2013] by 
producing Na+ and Cl–, which caused many physiological 
disorders in plants due to increased salt levels daily. 
Therefore, it is necessary to reduce these unfavourable effects. 
This is a massive concern for many global researchers to cope 
with the required food security and agricultural productivity 
rate. Since plants cannot control this abiotic stress, they have 
evolved several mechanisms to adapt and/or survive under 
high salt concentration soils through two strategies: stress 
tolerance (tolerating its presence within the cells) or stress 
avoidance (excluding salt from their cells). Furthermore, 
improving plant stress tolerance is critical for plant 
productivity and food sustainability to enhance water and 
fertiliser efficiency under environmental stress conditions 
[ZHU 2016]. Thus, the review highlights the harmful impact of 
salt on the plant, how plants respond to salt stress, and the 
role of different biochemical attributes and critical 
antioxidants in withstanding salt stress. 

SALT STRESS INDUCES CHALLENGING IMPACTS  
ON PLANT GROWTH AND PRODUCTIVITY 

Salinity negatively influences both leaf expansion and water 
levels. In addition, the imbalance in the plant water status, 
turgor reduction, and stomatal closure thus, causing growth 
inhibition through a reduction in photosynthesis. 
Interestingly, plant response by osmotic adjustment often 
involves raising Na+ and Cl– contents in different plant tissues. 
Excess inorganic ions can have significant toxic consequences 
and cause cell death. The osmotic adjustment reduced the 
fresh and dry weight ratio, increased apoplastic water content, 
and directly compatible solute aggregation [ELSHEERY et al. 
2020a, b; HERNÁNDEZ, ALMANSA 2002; ELHAMAHMY et al. 2021; 
NASER et al. 2016]. The seed germination of broccoli and 
cauliflower was grown under salt-stress conditions; the salt-
treated plants showed changes in the seed physiological 
activity. In addition, water levels, amino acid content, and 
nutrient reservation in the germinated seeds under saline 
stress [ARIF et al. 2020; WU et al. 2019]. In addition, several 
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plant species significantly reduced growth parameters under 
salt stress (e.g., reduction in phosphate activity in 
Arabidopsis) [NASRI et al. 2016]. In addition, the leaf and root 
dry weight and waterleaf levels were reduced in Balanites 
aegyptiacea [KHAMIS et al. 2016]. Reductions in the numbers 
and weight of cotton balls and the crop quality were observed 
when plants were grown under salt conditions [WANG et al. 
2018]. 

Moreover, salinity stress reduced tomato (Solanum 
Lycopersicum L.) growth parameters and leaf water potential 
[XUE et al. 2021]. Similarly, the pea (Pisum sativum L.) salt-
treated plant [HERNÁNDEZ, ALMANSA 2002]. Salinity affects the 
plant growth parameters of different strawberry cultivars 
grown under irrigation with 35 mM NaCl. The shoot and dry 
root weight and relative leaf water levels were reduced after 
seven days by (29–33%, 45–15%, and 11–13%), respectively 
[KARLIDAG et al. 2011]. Interestingly, there was a variation in 
soil salinity among the genotypes of the same plant species. 
For instance, three different genotypes of Populus alba: 6K3 
(sensitive), 2AS11 (moderately tolerant), and 14P11 
(tolerant), were grown under different levels of salt stress 
(i.e., 50–250 mM NaCl). After ten days, there was a significant 
genotypic variation in growth parameters. For example, the 
14P11 genotype significantly reduced leaf length and the 
lowest abscission rate. Moreover, genotype 14P11 
significantly revealed the smaller epidermal cells and the 
highest stomatal density values. Different modulation 
amongst the salt-treated plants was reported in stomata 
expansion compared to the epidermal cells. In contrast, the 
6K3 genotype revealed several features, such as leaf necrosis 
and the highest abscission rate. However, 2AS11, as a tolerant 
genotype, showed the lowest leaf physiology and morphology 
[ABBRUZZESE et al. 2009].  

CHANGES IN PHOTOSYNTHESIS  
AND STOMATAL CONDUCTANCE  

OF PLANTS GROWN UNDER SALINITY 

Increasing plant growth and development is the consequence 
of physiological processes that are interconnected and 
controlled. Various external conditions impact physiological 
processes, which define how plants respond to abiotic stress. 
For example, environmental factors that limit plant 
development cannot be attributed to a simple physiological 
mechanism. Photosynthesis which increases the plant 
biomass is considered the most important physiological 
mechanism. Therefore, the environmental factors that 
constrain photosynthesis negatively affect plant growth. 

Furthermore, salinity can cause short or long-term 
impacts on the photosynthesis mechanism. For example, after 
several hours or one to two days of starting the treatment, 
carbon absorption is significantly reduced as a short-term 
impact. After several days of the treatment, the salt 
accumulates ingrown leaves, causing a decline in carbon 
absorption and a reduction in net photosynthetic rate as a 
long-term impact [PARIDA, DAS 2005]. In addition, several 
studies stated that salt stress decreases photosynthesis 
efficiency. For instance, KHAVARI-NEJAD and CHAPARZADEH 
[1998] reported the rate of photosynthesis and chlorophyll 
content, besides the respiration and assimilation of CO2 in 

Alfalfa (Medicago sativa L.) leaves, decreased under salt stress. 
In addition, increasing salt concentration in four rice lines 
(Oryza sativa L.) decreased the emission of the chlorophyll 
fluorescence and the activities of PSI (photosystem I) and PSII 
(photosystem II), which caused a significant decline in the net 
photosynthetic efficiency [Tiwari et al. 1998]. Finally, MORADI 
and ISMAIL [2007] observed that salt stress gradually 
decreased the stomatal closure, CO2 fixation, and electron 
transport in the IR29 sensitive cultivar compared to IR651 as 
the tolerant cultivar. Several mechanisms are involved in the 
photosynthesis process, such as enzymes and intermediate 
products. Finally, the efficiency of photosynthesis is affected 
through several metabolic paths, for instance, the 
photosynthetic elements that transport across intracellular 
pathways, the photochemical reactions, the carbon absorption 
enzymes, the components of the photosynthetic apparatus 
[PARIDA, DAS 2005].  

Besides reducing photochemical efficiency, the stomatal 
and mesophyll conductance was reduced in different salt-
treated genotypes of olive (Olea europea L.) irrigated with 
saline water at 200 mM [LORETO et al. 2003]. The photosyn-
thetic rate was reduced in the rice salt-treated plant, and the 
osmotic potential, rate of electron transport, and CO2 
assimilation in rice leaf chloroplasts. However, the 
photosynthetic rate was decreased because of the leaf 
chloroplasts. In addition, salinity was reduced to the osmotic 
potential of the leaves because of stomatal limitations. The 
reduction in the mesophyll conductance of salt-stressed plant 
leaves was connected to the ion and osmotic levels [WANG et 
al. 2018a, b]. However, stomatal conductance constraints 
reduce photosynthetic activity, reducing CO2 availability in the 
carboxylation mechanism. 

Interestingly, the first stage of the negative impact of 
salinity on photosynthesis of barley (Hordeum vulgare) 
cultivars is attributed to the limitation of stomatal 
conductance more than the decline in PSII activity [KALAJI et 
al. 2011). The effects of salinity on the stomatal conductance 
were reported through two cultivars of strawberries grown 
under irrigation with 35 mM NaCl. After seven days, the 
stomata conductance and leaf chlorophyll reading values were 
reduced under salt stress to 71–55% and 12–13%, 
respectively [KARLIDAG et al. 2011]. In addition, several 
parameters related to stomata closure were negatively 
affected in tomatoes grown under different salt concentra-
tions. In addition, salinity has promoted the reduction in 
several stomatal factors (length, width, perimeter, area, and 
density), resulting in a reduction in photosynthetic and 
transpiration rate also chlorophyll content [Xue et al. 2021]. 
Furthermore, in the pea salt-treated plant, the stomata 
conductance was reduced after 48 h of salt treatment 
compared to the control [HERNÁNDEZ, ALMANSA 2002]. 

SALT STRESS-INDUCED CHANGES  
IN PLANT PHYTOHORMONES  

Osmolytes and plant hormones are established to play critical 
roles in harsh environments, for instance, Auxin (IAA), 
Cytokinins (CKs), abscisic acid (ABA), ethylene (ET), 
gibberellins (GAs), salicylic acid (SA), brassinosteroids (BRs), 
Jasmonic acid (JAs), and Strigolactone (SL). Several plant 
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phytohormones are up-regulated in response to increasing 
salt concentration in the soil, such as abscisic acid, cytokinin, 
and jasmonates [ELSHEERY et al. 2020a, b; ELHAMAHMY et al. 
2021; NASER et al. 2016; PARIDA, DAS 2005] (Fig. 1). 

 
Fig. 1. Salt impact on soil dramatically stresses plant biology and 
reduces plant growth and yield. Plants associated with their 
microbiome compositions through phytohormones and other plant 
growth promoters respond to abiotic stress; source: own study 

Abscisic acid (ABA) is a tiny molecule that plays a 
crucial role in the abscission of plant leaves. It is considered a 
“stress hormone” due to its responsiveness and specific 
involvement in plant adaptation to abiotic stressors [MÜLLER 
2021; OBROUCHEVA 2021]. It is present in plant roots and 
terminal buds near the top of the plant. ABA biosynthesis 
occurs in two places, starting in the plastids and ending in the 
cytosol. Numerous studies showed that the salt-treated plant 
contains a significant increment in ABA levels. For instance, 
[JIA et al. 2002] reported that the accumulation of ABA in roots 
under salt stress increased significantly up to 10-fold 
compared to about 1-fold in shoots. In facultatively halophytic 
Lophopyrum elongatum and the low salt-tolerant wheat, salt 
tolerance is increased when plants adapt to salt conditions 
rather than being shocked progressively. ABA regulates the 
acclimatisation process, where the pre-treatment with ABA 
enhances salt shock resistance. The ABA-induced adaptation 
is quick and associated with the upregulation of the root’s 
early salt-related genes. The tolerance of salt shock is better in 
L. elongatum than in wheat, and the tolerance is regulated by 
chromosome 3E in the L. elongatum genome and chromo-
somes 3A and 3D in wheat. Thus, the salt shock response 
through ABA in both species is connected to chromosome 3 
[ELSHEERY et al. 2020a, b; NASER et al. 2016; NOAMAN et al. 
2002]. 

Interestingly the increase of ABA in the salt-treated 
plant enhances several changes at the plant’s physiological 
levels to cope with salinity. Such as, in Mesembryanthemum 
crystallinum, the level of ABA was increased 8- to 10-fold 
under salt stress enabling the switching from C3 to 
crassulacean acid metabolism (CAM) and proline production 
in this plant [THOMAS et al. 1992]. Moreover, by rapidly 
changing guard cell ion fluxes, ABA enhances the stomatal 
conductance in plants under salt stress. Another ABA feature 
involves changes in the expression of ABA-related genes. 
Studies of ABA-responsive promoters have shown a wide 
range of possible cis-acting regulatory elements. In addition, 
several downstream signalling elements exhibited a significant 

role in ABA signal transduction, such as reversible protein 
phosphorylation, changes in cytosolic calcium levels, and pH 
[PARIDA, DAS 2005]. Nevertheless, during salinity, the level of 
the ABA was increased due to the increase of Ca2+ uptake, 
which helps the membrane integrity maintenance and allows 
the plant to control the nutrients transport and uptake under 
long-term salt stress [CHEN et al. 2001]. 

Salicylic acid (SA) is a natural phenolic molecule that 
modulates pathogenesis-related protein expression. Plant 
growth, ripening, development, and abiotic stress responses 
and defense responses are regulated mainly by it [MIURA, TADA 
2014; RIVAS-SAN VICENTE, PLASENCIA 2011]. In plants’ regular 
aerobic metabolism, several reactive oxygen species (ROS), 
such as (•) OH, (•) O2(–), and H2O2, are formed and scavenged. 
However, with deficient levels of ROS, significant signal 
transduction activities and triggering and/or directing plant 
responses to a range of stress conditions can all be done. 
However, oxidative stress occurs when (abiotic) stressors 
disrupt the balance between generating and scavenging ROS. 
In addition, various impacts, such as oxidative modification of 
vital macromolecules, cell death, and plant growth and 
development, can occur under uncontrolled oxidative stress 
[GILL, TUTEJA 2010]. Through interactions with various 
signalling pathways, including SA-mediated signalling 
pathways, apoplastic-ROS have been identified as cell death 
regulators [OVERMYER et al. 2003]. SA-dependent and 
independent signalling components and ROS-signalling 
resulted in appropriate defence response. SA can activate 
a protein kinase and serve as a signal for the development of 
systemic acquired resistance. The function of the NPR1 
protein in SA communication under biotic and abiotic stress is 
discussed in (Fig. 2). In addition, the SA receptor NPR1 (non-
expresser of PR (pathogenesis-related) protein 1) regulates 
PR gene expression in an SA-dependent way [MORINAKA et al. 
2006]. SA also binds to NPR1 and NPR4 (prologues of NPR1). 
Finally, an oligomeric NPR1 in an oxidised state can be 
detected in the cytoplasm with low SA concentrations. SA 
accumulates in the cellular redox state when stress levels 
grow, activating NPR1 monomers while lowering oxidised 
NPR1 oligomers. SA-NPR3/NPR4 interaction causes 
oligomeric NPR1 to become monomeric NPR1, which goes 
into the nucleus and interacts with specific transcription 
activators, co-activating the SA-responsive PR gene [FU et al. 
2012]. 

 
Fig. 2. The schematic shows the synergistic effects of salinity stress on 
cell membranes and their mechanistic response through cellular 
influx, sensing, and signalling; source: own study 
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Jasmonic acid is another phytohormone used through-
out the plant arsenal to cope with soil salinity. Besides 
improving plant tolerance to salinity, jasmonic acid exhibited 
significant roles in plant growth, floral development, fruit 
ripening, and protecting the plant from pathogen infection, 
insect attack, and wounding [SONG et al. 2021]. Jasmonates are 
considered critical signalling molecules in the plant defense 
mechanism. The jasmonate signalling components, such as 
jasmonate ZIM-domain (JAZ) and MYC2, have been recognised 
as critical factors in the interaction of jasmonic acid with 
another hormone signalling pathway. However, the 
orchestration coordination between jasmonate and the other 
phytohormones in the signal transduction pathway remains 
elusive [DELGADO et al. 2021]. Under salt stress, endogenous 
levels of JA increased in rice roots, which was reported to 
mitigate the adverse effects of salinity stress. In addition, plant 
antioxidant machinery can be activated with JAs to alleviate 
heavy metal stress. In addition, MeJA accumulates 
phytochelatins in A. thaliana plants, providing Cu and Cd 
stress [MAKSYMIEC et al. 2007; YAN et al. 2013]. In addition, 
pre-treatment wheat and rice with jasmonate improved their 
salt tolerance and significantly reduced the Na+ ion content in 
both plants [GHORBANI JAVID et al. 2011; QIU et al. 2014]. 
Additionally, it promotes the recovery process through 
seedling development and photosynthetic activity of soybean 
after salt stress conditions [YOON et al. 2009].  

Ethylene (ET) is a gaseous phytohormone that regu-
lates plant stress responses. In addition, it plays a role in fruit 
ripening, floral senescence, and leaf and petal abscission.  
S-adenosyl-L-methionine (AdoMet) and the cyclic non-protein 
amino acid ACC biosynthesise it from methionine. The 
conversion of AdoMet to ACC is catalysed by ACC synthase, 
while the conversion of ACC to ethylene is catalysed by ACC 
oxidase. Plant endogenous ET levels are affected by abiotic 
stressors such as low temperature and salinity. Higher ET 
concentrations improved tolerance [GROEN, WHITEMAN 2014]. 
For heat stress adaptation, ET is also required for plants 
[LARKINDALE et al. 2005]. Environmental stress promotes ET 
levels, improving the probability of plants surviving under 
these extreme conditions. ET is intended to function by 
controlling gene expression, one of the ethylene signal’s 
effectors. ET synergises when combined with other 
phytohormones like JA and SA. These are the most critical 
players in plants’ pest and disease defence regulation. ET and 
ABA appear to have a synergistic or antagonistic effect on 
plant growth and development, according to [KAZAN 2013; YIN 
et al. 2015]. 

Cytokinins are another phytohormone in the plant’s 
arsenal to cope with soil salinity. They are considered 
a significant factor in plant development and growth and 
regulate plant response to salinity stress; there are several 
naturally abundant isoprenoid cytokinins such as  
N6-isopentenyl adenine (IP), trans-zeatin (tZ), and cis-zeatin). 
The salt tolerance in (Medicago sativa L.) was improved 
through the overexpression of the cytokinin gene (CKXs) in 
the roots [LI et al. 2019]. Moreover, the ability of Arabidopsis 
to cope with the soil salinity was increased via the induction 
of cytokinin production through the up-regulation of cytokinin 
biosynthetic gene AtIPT8 (adenosine phosphate – isopentenyl 
transferase 8), which increased the induction of enzymatic 

antioxidants resulting in increasing the activity of ROS that 
finally improved the salinity stress tolerance in Arabidopsis 
[WANG et al. 2015]. Moreover, the total soluble sugars and the 
yield of rice were increased under salt treatment through the 
application of exogenous phytohormones such as Auxin 
(indole-3-acetic acid IAA) and kinetin (KIN) [GUJJAR et al. 
2021]. 

In plants, gibberellins are other plant phytohormones 
that can also enhance sugar signalling, osmolyte synthesis, 
and antioxidant activity, which benefits in scavenging reactive 
oxygen species and sustaining cell osmotic adjustment during 
soil salinity conditions. Moreover, it contributes to 
maintaining plant water levels and photosynthesis efficiency 
to mitigate the adverse effects of soil salinity and improve 
plant salt tolerance [CHELE et al. 2021]. In addition, 
polyamines accumulate in massive amounts in plant cells 
during salinity, regulating vital processes such as 
development, growth, and proliferation and acting as an 
osmoprotectant, retaining cell osmotic potential [CHOUDHARY 
et al. 2022].  

Brassinosteroids (BRs) are new polyhydroxy steroidal 
plant hormones that help plants grow and develop rapidly. 
They were discovered and identified in the pollen of the rape 
plant (Brassica napus). Plants have been found to have over 70 
different BRs. The three most bioactive BRs, brassinolide,  
28-homobrassinolide, and 24-epibrassinolide, are extensively 
employed in physiological and experimental studies [TONG, 
CHU 2018]. In addition, they participate in various 
developmental stages, including stem and root growth, floral 
initiation, and flower and fruit development. In addition, they 
are involved in several developmental processes, such as stem 
and root growth, floral initiation, and flower and fruit 
development [BAJGUZ, HAYAT 2009]. 

SALT TOLERANCE STRATEGIES 

Efficient strategies to boost plant salt tolerance are 
indispensable for understanding several plants’ responses 
under salt stress, such as physiological and molecular 
mechanisms [CHEN et al. 2021; WANG et al. 2021]. Therefore, it 
will be essential to cultivate and discover new salt-tolerant 
crops. Abiotic stress resistance is a comparative approach 
because of variations in salt tolerance between the plant 
species and varieties. For instance, some staple crops, i.e., 
barley (Hordeum vulgare), are more salt-tolerant than wheat 
and rice [CUI et al. 2021; ZHANG et al. 2022]. Since different 
crops are more drought-resistant than rice [NIU et al. 2022], 
plant biologists seek to identify the different mechanisms, set 
of genes, and expression level that helps plants survive under 
stressful conditions, improving the yield of salt-tolerant 
species [HOSSAIN, ISLAM 2022; KUMAR et al. 2022; MISHRA et al. 
2021]. Attention to that aspect, we will present some 
fundamental mechanisms to improve plants’ tolerance 
responses under salt conditions. Finally, an intriguing 
question regarding salt tolerance needs to be explained, how 
do plants sense and adapt to soil salinization with their 
various morphological, physiological, biochemical, and genetic 
expression responses. In addition, it would help regulate plant 
adaptation, enhance salinity-tolerant crops, and increase food 
production. In addition, plants were divided into glycophytes 
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(salt-sensitive group) and halophytes (salt tolerance group). 
The primary response of plants as individual and/or 
synergistic cells, either salt tolerance or sensitivity, is affected 
by several physiological and metabolic changes to survive in a 
saline environment. Finally, salt stress affects plant growth 
[NOOR et al. 2022; TRAN et al. 2021]. Salt tolerance has 
different physiological and biochemical mechanisms, 
including ion transport and uptake, ion homeostasis, 
a synthetic antioxidant enzyme, regulation hormones, and 
osmoprotectants biosynthetic. 
a) Ion homeostasis 

Homeostasis is defined as the predisposition of a cell to 
sustain its response to any conflict, environmental stress, or 
excites function activity towards these unfavourable 
conditions. Plant response to salt tolerance with different 
species evolved a specific mechanism to adapt to the saline 
environment, such as salt glands excreting excess salts in 
a few plant species. Ion transport and solubilisation are 
crucial in plant growth and play an essential role under salt 
stress during the life journey. It is known that ion transport 
processes across the tonoplast and the plasma membrane are 
essential for controlling sodium uptake and vacuole of the 
plant compartmentation, which pumps it into and out of the 
vacuole. Thus, plants exposed to salt stress reduce the water 
potential and accumulate in the cytosol by adjusting the 
osmotic imbalance and accumulating ions from the external 
environment. 

A highly cited study mentioned that Na+ transport might 
occur through outward rectifying cation channels. Excessive 
exposure to salt stress and plasma membrane depolarisation 
increases the possibility of outward rectifying cation channels 
in wheat root and tobacco cells, allowing the sodium influx to 
occur in its steep electrochemical gradient. Hence, 
physiological or biochemical strategies for salt tolerance that 
help reduce the open probability of these outward-rectifying 
channels would decrease pass Na+ into the cell as one of the 
adaptive processes in the saline environment to avoid plant 
growth and cell division [CHEN et al. 2007; SCHACHTMAN et al. 
1991]. 

Presumably, maintaining the ion homeostasis for both 
K+ and Na+ is crucial because regulating ion uptake provides 
a clear understanding of the ion homeostasis ion in plant cells. 
Besides, the explanation of plants’ possibility to adapt and/or 
survive in excessive salt accumulation improves the 
agricultural efficiency in the soil salinity with large-scale crops 
globally. For example, plant cells can sense the sodium-
specific signals of slat stress, which is probably essential in the 
Regulation of Na+ transport and the transcription of AtNHX1, 
the gene encoding the vacuolar Na+/H+ exchanger under 
osmotic stress. Genetic evidence to explain these signals’ vital 
roles is still lacking, but supposedly, Na+ ions can be sensed by 
plants either before or after entering the cells [YOKOI et al. 
2002]. For instance, sodium transport affects the apoplastic 
pathway and silica deposition in the cell wall [YEO et al. 1999]. 
A study DIETZ et al. [2001], WANG et al. [2001] suggested that 
the Na+ ion transport to the vacuole via Na+/H+ antiporter 
after entering the cells. They mentioned two types of H+ 
pumps in the vacuole’s cytoplasmic membrane: the vacuolar 
pyrophospha-tase (V-PPase) and vacuolar-type H+-ATPase  
(V-ATPase). The last one is the most dominant H+ pump in the 

plant cell. The experimental work by OLIVIERA OTOCH et al. 
[2001] revealed that vacuolar-type H+-ATPase pumps 
increased during salt exposure with inhibition of activity  
V-PPase, proving the importance of genetic regulation under 
stressful conditions. This part of this review presents a logical 
sequence for the underlying mechanism of stress signals  
(Fig. 2). Little is known about the mechanism of Na+ sensing in 
the cellular system. Numerous studies have investigated a salt 
overly sensitive (SOS) stress signalling pathway and 
elucidated its role in salt tolerance and ion uptake. The SOS 
system consists of three proteins, SOS1, SOS2, and SOS3. SOS1 
protein encodes a plasma membrane Na+/H+ antiporter with 
more than 700 amino acids in the cytoplasm. It plays an 
essential role in Na+ efflux regulation at the cellular level; Na+ 
transports from root to shoot and reduces salt stress by 
regulating the gene expression of this protein [SHI, ZHU 2002]. 
This exchanger activity is necessary for Na+ efflux in 
Arabidopsis plants; thus, the function of the SOS1 protein is 
a transporter. A sensor of Na+ and its activity is detected in the 
salt-stressed plant but not in the unstressed plant [HUSSAIN et 
al. 2021]. Like SNF1 protein in yeast and AMP-activated 
kinase (AMPK) in animals, the second protein is the SOS2 gene 
consisting of an N-terminal catalytic domain and a unique 
carboxy-terminal regulatory domain [GUPTA et al. 2021; LIU et 
al. 2000]. In addition, it encodes a serine/threonine kinase 
under salt stress. Finally, the C-terminal regulatory domain of 
SOS2 protein contains 21 amino acid long sequences called 
a NAF domain.  

The third one is SOS3; this protein has an essential role 
in configuring the signalling pathways for salt stress tolerance 
through the myristoylation Ca+ binding protein site, which 
senses the cytosolic calcium signal of salt stress [ZHANG et al. 
2022]. It also activates the kinase enzyme by interacting with 
SOS2 and SOS3 proteins. Besides conferring this stress, it 
regulates pH homeostasis and vacuole functions [MARTI�NEZ-
ATIENZA et al. 2006; OH et al. 2010]. 

SOS3 has a significant sequence in yeast and animals 
with calcineurin B subunit and neuronal calcium sensors [LIU, 
ZHU 1998]. The SOS1 gene is upregulated under salt stress on 
the transcription level, and this posttranscriptional regulation 
appears partly interact with both SOS2 and SOS3 [ZHU 2003]. 
Interestingly, there is a positive relationship between the 
high-level concentration of Na+ and intracellular Ca+, which 
induces its binding with the SOS3 protein to confer salt 
tolerance. SOS1 consists of a long C-terminal tail (~700 amino 
acids); this domain is a target site for SOS2 phosphorylation in 
the activation loop of kinase and phosphorylated SOS1 during 
the interaction complex between SOS2 and SOS3 on the 
plasma membrane, resulting in increasing the Na+ efflux, 
reducing the toxicity of Na+ as well [MARTI�NEZ-ATIENZA et al. 
2006]. 

Regulation and/or controlling the ion concentration for 
plant uptake under stress conditions is a process plants can 
develop to efficiently regulate the ion concentrations at a low 
level in the cytoplasm. This unbalanced concentration during 
a high level of Na+ under salt environments inhabits the K 
uptake by the plant, competes with Na+, disrupts K+ transport, 
and decreases its solubility in the soil. The ion transport 
process is controlled by several factors, i.e., the channel or 
carrier proteins, and the receptor types during the saline 
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condition [DEINLEIN et al. 2014]. The findings concluded that 
the sense of extracellular Na+ might be through receptors, 
while the control of intracellular Na+ sensing is by membrane 
proteins or specific enzymes in the cytoplasm. Understanding 
the underlying mechanisms and evolution of plant stress 
response could provide new aspects for improving crops’ 
efficiency under abiotic stress. 
b) Antioxidant machinery and osmoprotectants 

biosynthesis  
Abiotic stressors (e.g., salt, drought, pesticides, and heat) 

negatively influence plants’ physiological and biochemical 
processes, including hormone signalling and antioxidant 
systems [SHARMA et al. 2016]. Salinity stress induces free 
radical formation, i.e., hydroxyl radical (OH–), superoxide 
radicals (O2–), hydrogen peroxide (H2O2), and singlet oxygen. 
ROS factors could lead to increased oxidative stress in the 
cellular system in response to salt stress. For example, they 
might disrupt vital cellular processes, i.e., protein and DNA, 
and gene expression, protecting the cell from apoptosis in 
continuous stress exposure [ELSHEERY et al. 2020a, b; Gupta et 
al. 2005; NASER et al. 2016]. Plants adapt to avoid risk and 
boost their ability to live in harsh conditions through 
accumulating osmolytes and other appropriate solutes to 
protect their cellular machinery from various environmental 
stressors (Fig. 1). Glycine betaine (GB), sugars (mannitol, 
sorbitol, trehalose), polyamines, and proline are essential 
factors to help plants under stresses. 

Abiotic stress induces host plants to produce some 
sugars, e.g., trehalose, mannitol, and galactinol, to accumulate 
in plants. Numerous genes produce these organic solutes, 
which help transgenic plants generate abiotic stress resistance 
[TAJI et al. 2002]. In addition, plant phytohormones have a role 
in various biochemical and physiological processes. However, 
plant tolerance in challenging environments depends on 
reducing abiotic stress [SHAHZAD et al. 2018; TANVEER et al. 
2019]. 

Enormous studies show that the function of compatible 
solutes such as proline, sugars, polyols, and glycine betaine is 
synthesised and induced in various amounts within plant 
species during stressful conditions. These organic compounds’ 
primary role is to protect the cell’s structure via stress 
exposure and maintain the osmotic balance. Besides, some 
amino acids are decreased in the stress environment, i.e., 
cysteine, methionine, and arginine, which are considered the 
genetic code’s backbone during the central dogma of life. 
Although, proline level will be raised in salinity stress 
response and accumulate as an indicator of high-level salt 
stress. This compound’s synthetic pathways are regulated by 
two enzymes, pyrroline carboxylic acid synthetase and 
pyrroline carboxylic acid reductase [ASHRAF, FOOLAD 2007; 
CHEN et al. 2007; ELSHEERY et al. 2020a, b; NASER et al. 2016]. 

Another study on olive (Olea europaea L.) reported that 
proline supplemented increased plant growth and antioxidant 
enzymes, enhancing salt tolerance and photosynthetic activity 
[BEN AHMED et al. 2010]. Various studies revealed a positive 
relationship between plant salt tolerance and proline increase 
[MARTINEZ et al. 1996; SUREKHA et al. 2014]. A recent study 
KIBRIA et al. [2017] evaluated the proline content in saline 
conditions with salt-tolerant rice genotypes, which increased 
with high salt levels. They also mentioned that proline content 

decreased at 60 mmol∙dm–3 NaCl with the salt-sensitive 
genotype, while the salt-tolerant rice genotype accumulated 
approximately 2.2-fold higher proline than the control. 
Reducing proline accumulation in the salt-sensitive rice 
genotype might be a primary reason for high degradation and 
low proline synthesis in a saline environment. Another critical 
role by some sugars, i.e., glucose, sucrose, fructose, and 
trehalose accumulation, have a physiological response by an 
osmoprotective function during salt stress. For instance, 
sucrose content was increased in tomato plants in response to 
a salinity environment based on phosphate synthase enzyme. 
However, it was observed that sugar content has decreased in 
different rice genotypes, and starch content decreased in rice 
roots while unaffected in the shoot [PARIDA et al. 2004]. 

Glycine betaine (GB) is a nontoxic compatible solute 
that helps the plant cell under abiotic stress, i.e., salt. It has 
a crucial role in stress mitigation which protects the cellular 
systems by reducing stress damage and osmotic adjustment 
[MBARKI et al. 2018]. It appears to be the most influential 
member of widely ranging protective solutes under stress 
conditions in which the biosynthesis of GB increases the 
abiotic stress tolerance in crops. Moreover, GB’s accumulation 
increased the crop yield under normal conditions and 
correlated with enhancing tolerance for various stressful 
conditions [CHEN, MURATA 2008]. Foliar spray pre-treatment 
with glycine betaine has a positive effect on rice seedlings in 
saline conditions (150 mM NaCl) and protects these plants 
from structural damage, i.e., the disintegration of grana cells 
and mitochondria disruption, as well as increases both 
photosynthetic and growth rates [RAHMAN et al. 2002]. This 
function pathway consists of N-methylation, which catalyses 
into glycine sarcosine N-methyl transferase (GSMT) and 
sarcosine dimethylglycine N-methyl transferase (SDMT) 
[AHMAD et al. 2013]. The application of glycine betaine has 
been studied extensively in diverse strategic crops with 
different types of abiotic stress, i.e., Arabidopsis thaliana, 
Oryza sativa, Hordeum vulgare, Zea mays, and Triticum 
aestivum under drought and salt stress [LANDI et al. 2017]. 
Thus, the foliar spray of GB at the reproductive stage or the 
early stages of plant growth enhanced stress tolerance by 
induction of specific genes related to stress tolerance and 
increased the numbers of reproductive organs, i.e., flowers, 
plant developmental patterns, and the yield [CHEN, MURATA 
2008). 

On the other hand, oxygen is an abundant vital element 
for all living organisms’ sustainability; one of the water 
components by reducing O2 to H2O is one of the most critical 
necessities on Earth. However, incompletely reduction of O2 
would be generated highly reactive ROS, causing oxidation by 
producing various oxidative radicals. In addition, antioxidant 
enzymes’ role in keeping the ROS signals at low levels and 
reducing their damage affects the cellular molecules [APEL, 
HIRT 2004]. In addition, a positive association has been shown 
to increase the antioxidant activities of plant salt stress 
response and decrease oxidative damage, improving salt 
tolerance. In addition, antioxidant metabolites, including 
different enzymes that provide a pivotal role in salinity 
tolerance by reactive oxygen species (ROS) detoxification, 
protect the plant cells from the negative impact of salt stress 
(Fig. 3). 
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Fig. 3. Plant responses to various abiotic stresses and using osmolytes 
to counteract reactive oxygen species (ROS) under stressful 
conditions; source: own study 

c) Bacillus endophytes mitigate salt stress 
Plant growth-promoting bacteria (PGPB) play an essen-

tial role in the biological function of the rhizosphere, which 
improves agricultural crop yield and health [OROZCO-
MOSQUEDA et al. 2020; 2021]. Bacteria live in the rhizosphere’s 
soil zone by consuming plant root exudates [LI et al. 2021]. 
They include free-living soil and symbiotic bacteria [WHITE et 
al. 2018]. Abiotic stress tolerance, seed germination, shoot, 
root weights, root development, yield, phosphate, and 
nitrogen uptake is improved by bacterial endophytes. 
However, the ability of PGPB to improve crop production is 
influenced by several direct and indirect mechanisms, 
including inorganic phosphate and other mineral 
solubilisation, increased nutrient intake, nitrogen fixation, and 
plant hormone production [MARTÍNEZ-VIVEROS et al. 2010]. 
Moreover, PGPB protects the plants from severe abiotic 
factors, i.e., drought and temperature stress [SARMA, SAIKIA 
2014], salinity stress [BENSIDHOUM, NABTI 2019; SANDRINI et al. 
2022], heavy metal stress, and chilling plant injury [SINGH et 
al. 2018]. PGPB could mitigate the salt stress by various 
mechanisms studies in some plants, as cleared in Table 1. The 

initial effect of the salinity issue is osmotic stress, which 
causes a change in the water balance. It leads to stomatal 
closure [MUKHOPADHYAY et al. 2021], an imbalance in gas 
exchange, and a loss in the leaf area. This impacts plant 
growth; carbohydrates accumulate, especially in meristems, 
affecting new tissue formation [ILANGUMARAN, SMITH 2017]. 
Soil rhizosphere is rich with PGPB bacteria producing 
exopolysaccharides, high-molecular-weight organic polymers 
[ETESAMI, ADL 2020], which play essential roles in defence 
against environmental stress [GUPTA, DIWAN 2017]. In 
addition, exopolysaccharides improve soil aeration and 
porosity by increasing soil particle adhesion to bacteria 
resulting in macropore formation. These soil particles 
attaching and the structure increasing will reduce the initial 
osmotic stress [SHRIVASTAVA, KUMAR 2015]. Exopolysacch 
arides also chelate sodium ions in the rhizosphere, making 
them more conducive to plant root proliferation [ARORA et al. 
2012]. The other essential mechanism involved phytohor-
mones production; bacteria could release exogenous 
phytohormones to increase the plant salt tolerance as indole 
acetic acid (IAA) and abscisic acid (ABA), especially IAA, which 
produce 80% of rhizospheric bacteria [ALI et al. 2022; 
ZAKHAROVA et al. 1999]. Indole-3-acetic acid regulates cell 
division, plant growth, root elongation, and leaf differentiation 
[WU et al. 2021]. Abscisic acid acts as a cellular signal which 
regulates seed germination and induces different genes in 
response to drought and saline conditions [JOVANOVIĆ, RADOVIĆ 
2021]. Bacteria-producing Auxin stimulates cell division, seed 
germination, tissue differentiation, and root elongation 
[MÉNDEZ-GÓMEZ et al. 2021; SINGH et al. 2021]. Indole acetic 
acid (IAA) was decreased in plants under salt stress; however, 
it increased after inoculation with bacteria on the cotton 
rhizosphere [EGAMBERDIEVA et al. 2015]. Abscisic acid (ABA) 
and IAA levels were observed in wheat plants after 
inoculation with Bacillus cereus [NUMAN et al. 2018]. The 
overproduction of IAA improves plant salt stress tolerance by 
increasing proline levels as well as other phytohormones such 
as cytokinin (CK) and abscisic acid (ABA) [NESHAT et al. 2022] 
(Fig. 4). 

Table 1. Bacillus sp. promotes different plants under salinity stress 

Bacterial strains Effects on plant Plant species References 

1 2 3 4 

Bacillus spp. 

Under salt, stress promotes plant development through 
phosphate solubilisation and siderophore synthesis 

Zea mays L. 

ULLAH and BANO [2015] 

Plant biomass, carbohydrates, water homeostasis, and soil 
aggregate have improved VARDHARAJULA et al. [2011] 

Bacillus megaterium Root tolerance increased, and the aquaporin genes were 
upregulated MARULANDA et al. [2010] 

Bacillus amyloliquefaciens SN13 Plant biomass, the water content increase, while proline and 
ROS decreases 

Oryza sativa L. 

CHAUHAN et al. [2019] 

Bacillus amyloliquefaciens 
NBRISN13 Modify rhizosphere microbial community NAUTIYAL et al. [2013] 

Bacillus pumilus Plant biomass increases while lipid peroxidation and SOD 
activity decreases MOHAN and GUPTA [2015] 

Bacillus pumilis Plant biomass increases by the accumulation of glycine 
betaine-like compounds JHA et al. [2011] 
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continue Tab. 1. 

1 2 3 4 

Bacillus aquimaris plant biomass, soluble sugars, and proline increase 

Triticum aestivum L. 

UPADHYAY and SINGH [2015] 

Bacillus pumilus plant antioxidants increases KHAN et al. [2016] 

Bacillus pumilus lipid peroxidation and SOD activity decreases JHA and SUBRAMANIAN [2014] 

Bacillus pumilus FAB10 plant biomass increased ANSARI et al. [2019] 

Bacillus megaterium, 
B. tequilensis 

plant biomass, soluble sugars, and proline increase  HAROON et al. [2021] 

Bacillus subtilis SU47 plant biomass, soluble sugars, and proline increased UPADHYAY et al. [2012] 

Bacillus subtilis plant biomass and nutrient uptake increased TALEBI ATOUEI et al. [2019] 

Bacillus spp. 
plant growth promotion, root proliferation, increased proline 
content, and antioxidant activities, and decreased ethylene in 
the plant Capsicum annuum L. 

WANG et al. [2018] 

Bacillus spp. plant proline increased SZIDERICS et al. [2007] 

Bacillus amyloliquefaciens HM6 promote plant growth, root architecture under water stress Hordeum vulgare L. KASIM et al. [2016] 

Bacillus spp. plant biomass, photosynthesis, and water content increase 
Glycine max L. 

KUMARI et al. [2015] 

Bacillus japonicum, 
B. thuringiensis NEB17 

PEP carboxylase and antioxidant glutathione-S-transferase 
up-regulation  SUBRAMANIAN et al. [2016] 

Bacillus megaterium upregulation of jasmonic acid metabolism Arabidopsis thaliana L. ERICE et al. [2017] 

Bacillus amyloliquefaciens FZB42 plant biomass and nutrient uptake increased Arabidopsis thaliana L. LIU et al. [2017] 

Bacillus licheniformis, 
B. subtilis, Bacillus spp. plant biomass increased Fragaria x ananassa SEEMA et al. 2018 

Bacillus subtilis plant biomass and nutrient uptake increased Puccinellia tenuiflora 
Scribn., Merr. NIU et al. [2016] 

Source: own elaboration. 

 

Fig. 4. Plant-growth-promoting microbes can confer benefits (i.e., 
auxin and nutrient uptake) to the host plant (e.g., corn) by improving 
stress tolerance. In addition, an extensive root system localised with 
endophytes (Bacillus) allows plants to explore more soil and increases 
nutrient use efficiency, improving soil tilth and plant growth under 
stress; source: own study 

Bacillus spp. represents the dominant bacteria of the 
rhizosphere zone, characterised as harmless microbes with 
extraordinary abilities to synthesise many valuable 
compounds [STEIN 2005]. It has vigorous plant growth-
promoting qualities (i.e., IAA and ABA), nitrogen fixation, 
siderophore production, phosphate, and potassium 
solubilisation, and attributes like HCN synthesis as 
a biocontrol agent, enzymes, and antibiotics factory 
[SENTHILKUMAR et al. 2009]. Various Bacillus species are 
involved in plant salt stress tolerance (Tab. 1); Bacillus 
megaterium increases Zea mays L. root tolerance and 

upregulated the Aquaporins (AQPs) genes [MARULANDA et al. 
2010], Bacillus spp. promoted plant development, biomass, 
carbohydrates, and water homeostasis through phosphate 
solubilisation and siderophore synthesis [KHAN et al. 2021; 
ROLLI et al. 2015]. Using Bacillus amyloliquefaciens-SN13, plant 
biomass, the water content increase, while proline and ROS 
decrease in Oryza sativa L. [CHAUHAN et al. 2019]. Bacillus 
aquimaris enhanced Triticum aestivum L. biomass, soluble 
sugars, and proline [UPADHYAY, SINGH 2015], while Bacillus 
pumilus raised antioxidants and decreased lipid peroxidation 
and SOD activity. In addition, Bacillus aquimaris enhanced 
Triticum aestivum L. biomass while lipid peroxidation and SOD 
activity decrease [JHA, SUBRAMANIAN 2014]. Triticum aestivum 
L. biomass, soluble sugars, nutrient uptake, and proline 
increase by Bacillus megaterium, B. subtilis, and B. tequilensis 
inoculation [HAROON et al. 2021; TALEBI ATOUEI et al. 2019]. 
Bacillus spp. enhanced Capsicum annuum L. fresh, dry weight, 
root length, proline, and antioxidant activities, and decreased 
ethylene in plants [WANG et al. 2018], Arabidopsis thaliana L. 
nutrient uptake increased using Bacillus amyloliquefaciens 
[LIU et al. 2017].  
d) AMF mitigates the saline conditions  

Various communication processes between the plant 
and the fungus are facilitated by arbuscular mycorrhizal, 
which improves photosynthetic rates and increases water 
intake in high-stress environments [BIRHANE et al. 2012]. One 
promising method is the successful application of AMF to 
decrease salinity-induced plant damage [FRITZ et al. 2022; 
MALIK et al. 2022]. Plant growth is aided by AMF’s 
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establishment of a hyphal connection with plant roots, 
allowing roots access to soil [BOWLES et al. 2016]. In addition, 
AMF improves the efficacy and delivery of a wide range of 
nutrients, improving nutrient use efficiency [ROUPHAEL et al. 
2015] (Fig. 4), enhancing soil quality by altering its structure 
and texture to promote plant growth and sustain plant health 
[THIRKELL et al. 2017]. Moreover, critical physiological 
parameters are increased, such as the photosynthetic rate of 
total chlorophyll, consumption efficiency in Leaves extract, 
and leaf water relations under water scarcity and salt 
conditions [JERBI et al. 2022; TISARUM et al. 2022]. 

Furthermore, AMF inoculated Allium sativum plants 
grew better in saline conditions, with a greater leaf area index 
and fresh and dry biomass and N concentration in both shoot 
and root under saline stress [BORDE et al. 2010; PARIHAR et al. 
2022; SHARIFI et al. 2007; WANG et al. 2018a, b]. The inoculated 
plants produced extra jasmonic acid, salicylic acid, and 
a variety of other essential inorganic nutrients. Total P, Ca2+, 
N, Mg2+, and K+ concentrations were more significantly 
increased in AMF-treated Cucumis sativus plants than in 
uninoculated plants under saline conditions [HASHEM et al. 
2018]. Inoculating the Capsicum annuum with mycorrhizal 
fungus enhanced chlorophyll content, Mg2+, and N absorption 
while decreasing Na+ transport in saline environments [ÇEKIÇ 
et al. 2012]. In addition, SANTANDER et al. [2019] discovered 
that mycorrhizal plants had higher biomass output, enhanced 
proline biosynthesis, improved N uptake, and significant 
changes in ionic relations significantly reduced Na+ storage for 
non-mycorrhizal plants. In addition, AMF applications can 
successfully manage the levels of essential growth hormones 
and minimise oxidative stress by lowering lipid membrane 
peroxidation under salinity stress [HASHEM et al. 2016; SAXENA 
et al. 2017]. Interestingly, plants treated with AMF also 
produced more organic acids, which up-regulated a saline-
stressed plant’s osmoregulation mechanism. For example, 
maize, wheat, and soybean plants produced more organic 
acids under saline conditions. In addition, AMF supported 
enhanced betaine biosynthesis, demonstrating that AMF 
indirectly functions in plant osmoregulation when plants are 
stressed by salinity [MA et al. 2022].  

CONCLUSIONS 

Salinity harms agriculture (e.g., plant growth) by altering 
plants’ essential biochemical and physiological functions. For 
example, salinity decreases photosynthesis efficiency and 
leads to an imbalance in plant phytohormones such as abscisic 
acid, cytokinin, and jasmonates, affecting the productivity of 
crops. In addition, plants have many mechanisms to survive 
under salt stress, such as ion homeostasis, antioxidant enzyme 
production, and hormone level regulation. Beneficial 
microorganisms such as Bacillus and mycorrhizal fungi 
represent extraordinary abilities to synthesize a wide range of 
valuable compounds that decrease salt stress and promote 
plant growth. In sum, since salt stress is one of the most 
devastating abiotic stresses, it severely affects agricultural 
productivity in various ways.  

It is necessary to cultivate and discover new salt-
tolerant crops and employ the different tools of biotechnology 
to identify salt tolerance genes and transfer them into 

economic crops. Consequently, much effort is needed to focus 
on the salt genes and transcription factors to add new salt 
tolerance lines that can grow under extreme salt conditions. 
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