
Machine Learning (ML)

�Machine Learning is the study of how to build computer
systems that adapt and improve
subfield of Artificial Intelligence and intersects with cognitive
science, information theory, and probability theory, …etc

� Intelligent agents must be able
their interactions with the world, as well as through the
experience of their own internal states and processes.experience of their own internal states and processes.

�Simon's definition (1983) describes learning as allowing the

system to "perform better the second time

process by which a system improves performance from
experience.”

Machine Learning (ML)

Machine Learning is the study of how to build computer
improve with experience. It is a

subfield of Artificial Intelligence and intersects with cognitive
science, information theory, and probability theory, …etc

le to mange through the course of
their interactions with the world, as well as through the
experience of their own internal states and processes.experience of their own internal states and processes.

) describes learning as allowing the

perform better the second time.“ : “Learning is any

process by which a system improves performance from

Why Machine Learning

�Machine learning is important in several real life problem
because of the following reasons:

� Some tasks cannot be defined well except by example

�Working environment may not be known at design time

� Explicit knowledge encoding may be difficult and not available

�Environments change over time �Environments change over time

� learning is widely used in a num

• Data mining and knowledge discovery

• Speech/image/video (pattern) recognition

• Adaptive control

• Autonomous vehicles/robots

• Decision support systems

• Bioinformatics and WWW

Why Machine Learning

Machine learning is important in several real life problem
because of the following reasons:

Some tasks cannot be defined well except by example

Working environment may not be known at design time

Explicit knowledge encoding may be difficult and not available

Environments change over time Environments change over time

mber of application areas such as:

• Data mining and knowledge discovery

• Speech/image/video (pattern) recognition

Tasks of ML

�Prediction: To predict the desired output for a given input
based on previous input/output
of a stock given other inputs like interest rates etc.

�Categorization: To classify an object into one of several
categories based on features of
based on subject

�Clustering: To organize a group of objects into homogeneous �Clustering: To organize a group of objects into homogeneous
segments. E.g., a satellite image
land areas into forest, urban…etc, for better utilization of
natural resources.

�Planning: To generate an optim
a particular problem. E.g., an Au
path to avoid obstacles

Tasks of ML

: To predict the desired output for a given input
tput pairs. E.g., to predict the value

of a stock given other inputs like interest rates etc.

: To classify an object into one of several
s of the object. E.g., a spam email

: To organize a group of objects into homogeneous : To organize a group of objects into homogeneous
age analysis system which groups

land areas into forest, urban…etc, for better utilization of

ptimal sequence of actions to solve
n Automated Vehicle which plans its

Models of Learning

�Classical AI deals mainly with deductive reasoning, learning
represents inductive reasoning.

�Deductive reasoning arrives at
particular situation starting from a set of general axioms,

� inductive reasoning arrives at general axioms from a set of
particular instances.

�Classical AI often suffers from the knowledge acquisition
problem in real life applications where obtaining and updating
the knowledge base is costly and contains errors.

�Machine learning serves to solve the knowledge acquisition
bottleneck by obtaining the result from data by induction.

Models of Learning

Classical AI deals mainly with deductive reasoning, learning
represents inductive reasoning.

 at answers to queries relating to a
particular situation starting from a set of general axioms,

arrives at general axioms from a set of

Classical AI often suffers from the knowledge acquisition
problem in real life applications where obtaining and updating
the knowledge base is costly and contains errors.

Machine learning serves to solve the knowledge acquisition
bottleneck by obtaining the result from data by induction.

Inductive Learning

Simplest way to describe it: learn a function
(table-tree) from examples

- Ignores prior knowledge

- Assumes a deterministic, observable
environmentenvironment

- Assumes examples are given

- Assumes the “agent” wants to learn the
function (for a reason so and so)

Inductive Learning

Simplest way to describe it: learn a function
tree) from examples

Ignores prior knowledge

Assumes a deterministic, observable

Assumes examples are given

Assumes the “agent” wants to learn the
function (for a reason so and so)

Inductive Learning

� Induction, which is learning a generalization from a set of

examples, is one of the most fundamental learning tasks.

Different Approaches:

�Symbolic approach

�Neural Nets

�genetic and evolutionary learning.�genetic and evolutionary learning.

�Strongest models of learning we have, may be seen in the
human and animal systems that have evolved towards
equilibration with the world. This approach to learning through
adaptation is reflected in genetic algorithms, genetic
programming

� In the real world this information is often not immediately
available AI needs to be able to

Inductive Learning

, which is learning a generalization from a set of

examples, is one of the most fundamental learning tasks.

genetic and evolutionary learning.genetic and evolutionary learning.

Strongest models of learning we have, may be seen in the
human and animal systems that have evolved towards
equilibration with the world. This approach to learning through

genetic algorithms, genetic

the real world this information is often not immediately
needs to be able to learn from experience

Different kinds of

Supervised learning:

Someone gives us examples a
examples

We have to predict the right answer for unseen examples

Unsupervised learning:

We see examples but get no feedbackWe see examples but get no feedback

We need to find patterns in the data

Reinforcement learning:

We take actions and get rewards

Have to learn how to get high rewards

Different kinds of learning

es and the right answer for those

We have to predict the right answer for unseen examples

We see examples but get no feedbackWe see examples but get no feedback

We need to find patterns in the data

We take actions and get rewards

Have to learn how to get high rewards

Symbolic vs. sub

“Old”-Fashioned AI is inherently symbolic

Physical Symbol System Hypothesis:

and sufficient condition for intelligence is the
representation and manipulation of symbols

Ex. Turing MachinesEx. Turing Machines

alternatives to symbolic AI
A

� connectionist models –

model individual neurons and their connections

properties: parallel, distributed, sub

examples: neural nets,
NN, associative memories (Hopfield

networks)

Symbolic vs. sub-symbolic AI

Fashioned AI is inherently symbolic

Symbol System Hypothesis: A necessary
and sufficient condition for intelligence is the
representation and manipulation of symbols.

8

alternatives to symbolic AI

based on a brain metaphor

model individual neurons and their connections

parallel, distributed, sub-symbolic

neural nets, perceptrons, backpropagation
NN, associative memories (Hopfield

SubSymbolic Representations

Decision trees can be easily read

A disjunction of conjunctions (logic

representation

Non-symbolic representations

More numerical in nature, more difficult to readMore numerical in nature, more difficult to read

Artificial Neural Networks (ANNs)

A Non-symbolic representation scheme

They embed a giant mathematical function

To take inputs and compute an output which is

interpreted as a categorisation

Often shortened to “Neural Networks”

Don’t confuse them with real neural networks (in heads)

Representations

Decision trees can be easily read

A disjunction of conjunctions (logic), We call this a symbolic

symbolic representations

More numerical in nature, more difficult to readMore numerical in nature, more difficult to read

Artificial Neural Networks (ANNs)

symbolic representation scheme

They embed a giant mathematical function

To take inputs and compute an output which is

interpreted as a categorisation

Often shortened to “Neural Networks”

Don’t confuse them with real neural networks (in heads)

Interest in Subsymbolic

40 50 60 70 80 90 00 10

Subsymbolic AI

40 50 60 70 80 90 00 10

Helpful Resource

Gurney, Kevin. An Introduction to Neural
Networks, 1996.

Helpful Resource (in addition to Luger)

An Introduction to Neural

11

Neural Networks

- Neural Networks can be :

- Biological models
- Artificial models- Artificial models

- Desire to produce artificial systems capable of
sophisticated computations similar to the human

brain.

Neural Networks

Desire to produce artificial systems capable of
sophisticated computations similar to the human

Biological analogy

general brain architecture:
� many (relatively) slow neurons, interconnected
� Dendrites(ا������ت) serve as input devices (receive

electrical impulses from other neurons)
� cell body "sums" inputs from the dendrites (possibly

inhibiting or exciting)
� if sum exceeds some thre

impulse along axon, sending an electrical pulse to other
neurons

Biological analogy

13

many (relatively) slow neurons, interconnected
serve as input devices (receive

electrical impulses from other neurons)
cell body "sums" inputs from the dendrites (possibly

reshold, the neuron fires an output
axon, sending an electrical pulse to other

The brain is composed of a mass of interconnected
neurons, each neuron is connected to many other
neurons

The brain:

Biological analogy

Neurons transmit signals to each other

Whether a signal is transmitted to an event or not (the
electrical potential in the cell body of the neuron is
thresholded)

Whether a signal is sent, depends on the strength of the
bond (synapse-	
between two neurons (ا���

The brain is composed of a mass of interconnected
neurons, each neuron is connected to many other

Biological analogy

Neurons transmit signals to each other

Whether a signal is transmitted to an event or not (the
electrical potential in the cell body of the neuron is

Whether a signal is sent, depends on the strength of the
) between two neurons

Definitions

Neuron: The cell that performs information

processing in the brain.

- Fundamental functional unit of all nervous system

tissue.

Connectionist models (neural nets)

A Neural Network: is a system composed of

many simple processing elements operating in

parallel which can acquire, store, and utilize

experiential knowledge.

- Each element of NN is a node called

- Units are connected by

- Each link has a numeric weight

Neuron: The cell that performs information

processing in the brain.

Fundamental functional unit of all nervous system

Connectionist models (neural nets)

: is a system composed of

many simple processing elements operating in

parallel which can acquire, store, and utilize

experiential knowledge.

Each element of NN is a node called unit.

Units are connected by links.

numeric weight.

History of Neural Networks
1943: McCulloch and Pitts proposed a model of a neuron

Perceptron

1960: Widrow and Hoff explored
they called “Adelines”)

1962: Rosenblatt proved the convergence of the
training rule.

1969: Minsky and Papert showed that the 1969: Minsky and Papert showed that the
deal with nonlinearly-separable data sets
represent simple function such as X

1970-1985: Very little research on Neural Nets

1986: Invention of Backpropagation
nonlinearly-separable data sets.
Parker and earlier on: Werbos]

Since 1985: A lot of research in Neural Nets!

History of Neural Networks
McCulloch and Pitts proposed a model of a neuron -->

and Hoff explored Perceptron networks (which

Rosenblatt proved the convergence of the perceptron

showed that the Perceptron cannot

16

showed that the Perceptron cannot
separable data sets---even those that

represent simple function such as X-OR.

Very little research on Neural Nets

Backpropagation which can learn from
separable data sets. [Rumelhart and McClelland, but also

: A lot of research in Neural Nets!

How NN learns a task.

- Initializing the weights

- Use of a learning algorithm.

- Set of training examples.- Set of training examples.

- Encode the examples as inputs.

- Convert output into meaningful results.

How NN learns a task.

Initializing the weights.

Use of a learning algorithm.

Set of training examples.Set of training examples.

Encode the examples as inputs.

Convert output into meaningful results.

Computing

A typical unit:

Computing Elements

Computing

The output : a i = g (

Computing Elements

= g (Σ j W j,I a j)

Simple Computations in this network

-There are 2 types of components:
Non-linear.

- Linear: Input function- Linear: Input function
- calculate weighted sum of all inputs.

- Non-linear: Activation function
- transform sum into activation level.

Simple Computations in this network

types of components: Linear and

calculate weighted sum of all inputs.

Activation function
transform sum into activation level.

Activation Functions

- Use different functions to obtain different models.

- 3 most common choices :

1) Step function1) Step function
2) Sign function
3) Sigmoid function

- An output of 1 represents firing
the axon.

Activation Functions

Use different functions to obtain different models.

most common choices :

represents firing of a neuron down

Activation Activation Functions

Two-Layer Feed

Neural Network

Layer Feed-Forward

Neural Network

Standard structure of an artificial neural
network

Input units

represents the input as a fixed
(user defined)

Hidden units

calculate threshold weighted sums of the inputscalculate threshold weighted sums of the inputs

represent intermediate calculations that the network learns

Output units

represent the output as a fixed length vector of numbers

Standard structure of an artificial neural

represents the input as a fixed-length vector of numbers

calculate threshold weighted sums of the inputscalculate threshold weighted sums of the inputs

represent intermediate calculations that the network learns

represent the output as a fixed length vector of numbers

Network Structure

Feed-forward neural nets:

Links can only go in one direction.Links can only go in one direction.

Recurrent neural nets:

Links can go anywhere and form arbitrary

topologies.

Network Structure

forward neural nets:

Links can only go in one direction.Links can only go in one direction.

Links can go anywhere and form arbitrary

Feed Forward Network
- Arranged in layers.

- Each unit is linked only in the unit in next layer

- No units are linked between the same layer

to the previous layer or skipping a layer.

- Computations can proceed uniformly- Computations can proceed uniformly

output units.

Feed Forward Network

linked only in the unit in next layer.

No units are linked between the same layer, back

to the previous layer or skipping a layer.

uniformly from input touniformly from input to

Multi-layer Networks

- Have one or more
layers of hidden units.

-
layer are called
perceptrons

- With two possibly
very large hidden
layers, it is possible
to implement any
function.

perceptrons

-
limited in what they can
represent, but this makes
their learning problem
much simpler.

and PerceptronsPerceptrons

- Networks without hidden
layer are called
perceptrons.perceptrons.

- Perceptrons are very
limited in what they can
represent, but this makes
their learning problem
much simpler.

- First studied in the late 1950s.

- Also known as Layered Feed-Forward Networks.

- The only efficient learning element at that time was
for single-layered networks.

Perceptron

for single-layered networks.

- Today, used as a synonym for a single
feed-forward network.

s.

Forward Networks.

The only efficient learning element at that time was

Perceptron

Today, used as a synonym for a single-layer,

Perceptrons
Early neural nets

Perceptrons
Early neural nets

Perceptron (artificial neuron)

x a

inputs weights

x b

+

(artificial neuron)

output

threshold

30

>10?

Example of Training

Inputs and outputs are

Initially, weights are random

Provide training inputProvide training input

Compare output of neural network to desired
output

If same, reinforce patterns

If different, adjust weights

Example of Training

Inputs and outputs are 0 (no) or 1 (yes)

Initially, weights are random

Provide training input

31

Provide training input

Compare output of neural network to desired

If same, reinforce patterns

If different, adjust weights

Example

If both inputs are 1, output

x 2

inputs weights

x 2

x 3

output should be 1.

threshold

32

+ >10?

output

threshold

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

, output should be 1.

threshold

33

+ >10?

output

threshold

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

2

3

, output should be 1.

threshold

34

+ >10?

output

threshold

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

2

3

, output should be 1.

threshold

35

+ >10?

output

threshold

5

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

2

3

, output should be 1.

threshold

36

+ >10?

output

threshold

5
0

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

2

3

, output should be 1.

threshold

37

+ >10?

output

threshold

5
0

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

2

3

, output should be 1.

threshold

38

+ >10?

output

threshold

5
0

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

Repeat for all inputs until weights stop changing.

, output should be 1.

threshold

39

+ >10?

output

threshold

Repeat for all inputs until weights stop changing.

Computations

Consider the perceptron

Multiple input nodes

Single output node

Takes a weighted sum of the inputs, call this S

Unit function calculates the output for the networkUnit function calculates the output for the network

if Σw

if Σw

θ

x
1

x
n

x
2

. . .

w
1

w
2

w
n

Computations

perceptron:

Takes a weighted sum of the inputs, call this S

Unit function calculates the output for the network

40

Unit function calculates the output for the network

wixi >= θθθθ, output = 1

wixi < θθθθ, output = 0

Computation via activation

function
can view an artificial neuron as a computational

element accepts or classifies
output fires

INPUT: x1

.75*1

INPUT: x1
1 INPUT: x1

.75*1

INPUT: x1

.75*0

INPUT: x1

.75*0

1

x
1

x
2

.75 .75

this neuron

Computation via activation

function
can view an artificial neuron as a computational

classifies an input if the

1 = 1, x2 = 1

1 + .75*1 = 1.5 >= 1 � OUTPUT: 1

1 = 1, x2 = 0

41

1 = 1, x2 = 0

1 + .75*0 = .75 < 1 � OUTPUT: 0

1 = 0, x2 = 1

0 + .75*1 = .75 < 1 � OUTPUT: 0

1 = 0, x2 = 0

0 + .75*0 = 0 < 1 � OUTPUT: 0

this neuron computes the AND function

Exercise

specify weights and thresholds to compute OR

INPUT: x1 =

w1*1 + w

INPUT: x1 =
θ

w1*1 + w

INPUT: x1 =

w1*0 + w

INPUT: x1 =

w1*0 + w

θ

x
1

x
2

w
1

w
2

Exercise

specify weights and thresholds to compute OR

= 1, x2 = 1

+ w2*1 >= θθθθ � OUTPUT: 1

= 1, x2 = 0

42

+ w2*0 >= θθθθ � OUTPUT: 1

= 0, x2 = 1

+ w2*1 >= θθθθ � OUTPUT: 1

= 0, x2 = 0

+ w2*0 < θθθθ � OUTPUT: 0

Another exercise?

specify weights and thresholds to compute XOR

INPUT: x1 =

w1*1 + w

INPUT: x1 =
θ

w1*1 + w

INPUT: x1 =

w1*0 + w

INPUT: x1 =

w1*0 + w

θ

x
1

x
2

w
1

w
2

we'll come back to this later…

Another exercise?

specify weights and thresholds to compute XOR

= 1, x2 = 1

+ w2*1 >= θθθθ � OUTPUT: 0

= 1, x2 = 0

43

+ w2*0 >= θθθθ � OUTPUT: 1

= 0, x2 = 1

+ w2*1 >= θθθθ � OUTPUT: 1

= 0, x2 = 0

+ w2*0 < θθθθ � OUTPUT: 0

we'll come back to this later…

Normalizing thresholds

to make life more uniform, can normalize the
threshold to 0

simply add an additional input x

θ

x
1

x
n

x
2

. . .

w
1

w
2

w
n

advantage: threshold = 0 for all neurons

Σwixi >= θθθθ ≡≡≡≡

Normalizing thresholds

to make life more uniform, can normalize the

simply add an additional input x0 = 1, w0 = -θ

0

44

-θθθθ*1 + Σwixi >= 0

x
1

x
n

x
2

. . .

w
1

w
2

w
n

1

−θ

Normalized examples

INPUT: x

INPUT: x

INPUT: x

INPUT: x

0

.75
.75-1

AND

x
1

x
2

1

INPUT: x

INPUT: x

INPUT: x

INPUT: x

0

x
1

x
2

.75
.75-.5

1

OR

Normalized examples

INPUT: x1 = 1, x2 = 1

1*-1 + .75*1 + .75*1 = .5 >= 0 � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-1 +.75*1 + .75*0 = -.25 < 0 � OUTPUT: 0

INPUT: x1 = 0, x2 = 1

1*-1 +.75*0 + .75*1 = -.25 < 0 � OUTPUT: 0

INPUT: x1 = 0, x2 = 0

1*-1 +.75*0 + .75*0 = -1 < 0 � OUTPUT: 0

45

1*-1 +.75*0 + .75*0 = -1 < 0 � OUTPUT: 0

INPUT: x1 = 1, x2 = 1

1*-.5 + .75*1 + .75*1 = 1 >= 0 � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-.5 +.75*1 + .75*0 = .25 >0 � OUTPUT: 1

INPUT: x1 = 0, x2 = 1

1*-.5 +.75*0 + .75*1 = .25 < 0 � OUTPUT: 1

INPUT: x1 = 0, x2 = 0

1*-.5 +.75*0 + .75*0 = -.5 < 0 � OUTPUT: 0

Perceptrons

Rosenblatt (1958) devised a learning algorithm for artificial
neurons

start with a training set (example inputs & corresponding
desired outputs)

train the network to recognize the examples in the training set
(by adjusting the weights on the connections)

once trained, the network can be applied to new examples
Perceptron learning algorithm:

1. Set the weights on the connections with random values.

2. Iterate through the training set, comparing the output of the network with the
desired output for each example.

3. If all the examples were handled correctly, then DONE.

4. Otherwise, update the weights for each incorrect example:

• if should have fired on x1, …,xn
• if shouldn't have fired on x1, …,x

5. GO TO 2

Perceptrons

) devised a learning algorithm for artificial

start with a training set (example inputs & corresponding

train the network to recognize the examples in the training set
(by adjusting the weights on the connections)

46

once trained, the network can be applied to new examples

Set the weights on the connections with random values.

Iterate through the training set, comparing the output of the network with the

If all the examples were handled correctly, then DONE.

Otherwise, update the weights for each incorrect example:

but didn't, wi += xi (0 <= i <= n)

xn but did, wi -= xi (0 <= i <= n)

Example: perceptron

Suppose we want to train a
compute AND

training set:

0 randomly, let: w = -0.90

1 x
2

x
1

-0.9
0.6

0.2

randomly, let: w0 = -0.9

using these weights:
x1 = 1, x2 = 1: -0.9*1 +
x1 = 1, x2 = 0: -0.9*1 +
x1 = 0, x2 = 1: -0.9*1 +
x1 = 0, x2 = 0: -0.9*1 +

new weights: w0 = -0.9
w1 = 0.6
w2 = 0.2

perceptron learning

Suppose we want to train a perceptron to

training set: x1 = 1, x2 = 1 � 1

x1 = 1, x2 = 0 � 0
x1 = 0, x2 = 1 � 0
x1 = 0, x2 = 0 � 0

9, w = 0.6, w = 0.2

47

9, w1 = 0.6, w2 = 0.2

+ 0.6*1 + 0.2*1 = -0.1 � 0 WRONG
+ 0.6*1 + 0.2*0 = -0.3 � 0 OK
+ 0.6*0 + 0.2*1 = -0.7 � 0 OK
+ 0.6*0 + 0.2*0 = -0.9 � 0 OK

9 + 1 = 0.1
6 + 1 = 1.6
2 + 1 = 1.2

Example: perceptron

0

1 x
2

x
1

0.1
1.6

1.2

using these updated weights:
x1 = 1, x2 = 1: 0.1*1 +
x1 = 1, x2 = 0: 0.1*1 +
x1 = 0, x2 = 1: 0.1*1 +
x1 = 0, x2 = 0: 0.1*1 +

new weights: w0 = 0.1
w1 = 1.6
w2 = 1.2 21 w2 = 1.2

0

1 x
2

x
1

-2.9
0.6

0.2

using these updated weights:
x1 = 1, x2 = 1: -2.9*1 +
x1 = 1, x2 = 0: -2.9*1 +
x1 = 0, x2 = 1: -2.9*1 +
x1 = 0, x2 = 0: -2.9*1 +

new weights: w0 = -2.
w1 = 0.
w2 = 0.

perceptron learning

using these updated weights:
+ 1.6*1 + 1.2*1 = 2.9 � 1 OK
+ 1.6*1 + 1.2*0 = 1.7 � 1 WRONG
+ 1.6*0 + 1.2*1 = 1.3 � 1 WRONG
+ 1.6*0 + 1.2*0 = 0.1 � 1 WRONG

1 - 1 - 1 - 1 = -2.9
6 - 1 - 0 - 0 = 0.6
2 - 0 - 1 - 0 = 0.2

48

2 - 0 - 1 - 0 = 0.2

using these updated weights:
+ 0.6*1 + 0.2*1 = -2.1 � 0 WRONG
+ 0.6*1 + 0.2*0 = -2.3 � 0 OK
+ 0.6*0 + 0.2*1 = -2.7 � 0 OK
+ 0.6*0 + 0.2*0 = -2.9 � 0 OK

.9 + 1 = -1.9

.6 + 1 = 1.6

.2 + 1 = 1.2

Example: perceptron

0

-1.9
1.6

1.2

using these updated weights:
x1 = 1, x2 = 1: -1.9*1
x1 = 1, x2 = 0: -1.9*1
x1 = 0, x2 = 1: -1.9*1
x1 = 0, x2 = 0: -1.9*1

DONE!

1 x
2

x
1

DONE!

EXERCISE: train a perceptron to compute OR

perceptron learning

using these updated weights:
1 + 1.6*1 + 1.2*1 = 0.9 � 1 OK
1 + 1.6*1 + 1.2*0 = -0.3 � 0 OK
1 + 1.6*0 + 1.2*1 = -0.7 � 0 OK
1 + 1.6*0 + 1.2*0 = -1.9 � 0 OK

49

Learning Algorithm

�Weights, initially, are set

�For each training example E

Calculate the observed output from the ANN, o(E)

If the target output t(E) is different
Then tweak all the weights so that o(E) gets closer to t(E)Then tweak all the weights so that o(E) gets closer to t(E)

Tweaking is done by perceptron

This routine is done for every example E

�Don’t necessarily stop when all examples used

Repeat the cycle again (an ‘epoch
produces the correct output for “all “ the
examples in the training set (or good enough)

Learning Algorithm

are set randomly

each training example E

Calculate the observed output from the ANN, o(E)

If the target output t(E) is different from o(E)
all the weights so that o(E) gets closer to t(E)all the weights so that o(E) gets closer to t(E)

perceptron training rule

routine is done for every example E

Don’t necessarily stop when all examples used

Repeat the cycle again (an ‘epoch’) Until the ANN
output for “all “ the

examples in the training set (or good enough)

Perceptron training alg.
∆ wi = c(d-sign((Σ

Where c is the learning rate, d is the desired output and
sign(Σxi wi) is the actual output

If the desired output and actual output are equal, do nothing

If the actual value is -1 and should be
weights on the ith line by “2c xi

If the actual value is 1 and should be
weights on the ith line by “2c xi “

i.e. We can think of the addition of ∆w

weight in a direction Which will improve the networks performance

with respect to the example. Multiplication by xi,
input is bigger

training alg.
sign((Σxi wi))xi

Where c is the learning rate, d is the desired output and

If the desired output and actual output are equal, do nothing

and should be 1, increment the

i “

and should be -1, decrement the
“

wi as the movement of the

Which will improve the networks performance

Multiplication by xi, Moves it more if the

The Learning Rate

∆ wi = c(d-sign((

� c (in some books η) is called the learning
set to something small (e.g.,
output output

� To control the movement of the
far for one example Which
another example

� If a large movement is actually necessary for the weights
to correctly categorise the example

This will occur over time with multiple epochs

The Learning Rate

sign((Σxi wi))xi

is called the learning rate, Usually
set to something small (e.g., 0.1 or less), d is the desired

control the movement of the weights Not to move too
example Which may over-compensate for

a large movement is actually necessary for the weights
the example

This will occur over time with multiple epochs

Example

Suppose we want to train this network with

Inputs: x1 = -1, x2 = 1, x

Use a learning rate of η = 0

Suppose we have set random weights:Suppose we have set random weights:

Suppose we want to train this network with

, x3 = 1, x4 = -1, and output 1

0.1

Suppose we have set random weights:Suppose we have set random weights:

The Error Values

∆ wi = η(d-sign((Σxi wi))xi , η =

x1 = -1, x2 = 1, x3 = 1, x4 = -1

Propagate this information through the network:
S = (-0.5 * 1) + (0.7 * -1) + (-0.2 * 1) + (

Hence the network outputs Hence the network outputs

But this should have been +

Error Values

η = 0.1

Propagate this information through the network:
) + (0.1 * 1) + (0.9 * (-1)) = -2.2

Hence the network outputs -1Hence the network outputs -1

But this should have been +1

The Error Values

∆ wi = η(d-sign((Σxi wi))xi , η =

x1 = -1, x2 = 1, x3 = 1, x4 = -1

Now: real output d=1 while calculated

∆w0 = 0.1 * (1 - (-1)) * (1) = 0.1

∆w = 0.1 * (1 - (-1)) * (-1) = 0.1 ∆w1 = 0.1 * (1 - (-1)) * (-1) = 0.1

∆w2 = 0.1 * (1 - (-1)) * (1) = 0.1

∆w3 = 0.1 * (1 - (-1)) * (1) = 0.1

∆w4 = 0.1 * (1 - (-1)) * (-1) = 0.1

New Weights: w’0 = -0.5 + ∆w0 =

w’1 = 0.7 + -0.2 = 0.5 w’2
w’3= 0.1 + 0.2 = 0.3 w’4

Error Values

η = 0.1

while calculated signΣxi wi =-1

1 * (2) = 0.2

1 * (-2) = -0.21 * (-2) = -0.2

1 * (2) = 0.2

1 * (2) = 0.2

1 * (-2) = -0.2

= -0.5 + 0.2 = -0.3

2 = -0.2 + 0.2 = 0

4 = 0.9 - 0.2 = 0.7

New Perceptron

Using the new weights:

w’0=-0.3, w’1=0.5, w’2=0,w’3=0.3,w’

Calculating again: (x1 = -1, x
S = (-0.3 * 1) + (0.5 * -1) + (0 * +1) + (

Still gets the wrong categorisation
But the value is closer to zero (from But the value is closer to zero (from

In a few epochs time, this example will be correctly categorised

Perceptron

,w’4 = 0.7

, x2 = 1, x3 = 1, x4 = -1)
) + (0.3 * +1) + (0.7 * -1) = -1.2

Still gets the wrong categorisation
But the value is closer to zero (from -2.2 to -1.2)But the value is closer to zero (from -2.2 to -1.2)

In a few epochs time, this example will be correctly categorised

Boolean Functions as

�Perceptrons are very simple

�Perceptrons cannot learn some simple �Perceptrons cannot learn some simple
functions.

�Killed the ANNs in AI for many years
People thought it represented a fundamental limitation

But perceptrons are the simplest network ANNS were
revived by neuroscientists later, etc.

�XOR boolean function cannot be represented as a
perceptron because it is NOT

linearly separable

Boolean Functions as Perceptrons

very simple networks

learn some simple Boolean learn some simple Boolean

AI for many years
People thought it represented a fundamental limitation

are the simplest network ANNS were
revived by neuroscientists later, etc.

function cannot be represented as a
NOT

Linearly Separable Boolean Functions

Linearly separable:
Can use a line (dotted) to separate +

Theorem: There is a perceptron
separable function, given enough training examples.

Linearly Separable Boolean Functions

Can use a line (dotted) to separate +1 and –1

perceptron that will learn any linearly
separable function, given enough training examples.

Linearly Separable Functions

Result extends to functions taking many inputs

And outputting +1 and –

Also extends to higher dimensions for outputs

Linearly Separable Functions

Result extends to functions taking many inputs

–1

Also extends to higher dimensions for outputs

Perceptron Convergence

Perceptron convergence theorem
is linearly separable and therefore a set of weights
exist that are consistent with the data, then the
Perceptron algorithm will eventually converge to a
consistent set of weights.

Perceptron cycling theoremPerceptron cycling theorem
linearly separable, the Perceptron
eventually repeat a set of weights and threshold at
the end of some epoch and therefore enter an
infinite loop.

By checking for repeated weights+threshold
guarantee termination with either a positive or negative
result.

Convergence

convergence theorem: If the data
is linearly separable and therefore a set of weights
exist that are consistent with the data, then the

algorithm will eventually converge to a
consistent set of weights.

cycling theorem: If the data is not

60

cycling theorem: If the data is not
Perceptron algorithm will

eventually repeat a set of weights and threshold at
the end of some epoch and therefore enter an

weights+threshold, one can
guarantee termination with either a positive or negative

N-layer Feed Forward Network

Layer 0 is input nodes

Layers 1 to N-1 are hidden nodes

Layer N is output nodesLayer N is output nodes

All nodes at any layer k are connected to all nodes at
layer k+1

There are no cycles

Theorem:

Given an arbitrary number of hidden units, any Boolean
function can be computed with a single hidden layer.

layer Feed Forward Network

are hidden nodes

All nodes at any layer k are connected to all nodes at

Given an arbitrary number of hidden units, any Boolean
function can be computed with a single hidden layer.

XOR Solution

Multi-Layer Networks
Built from Perceptron Units

Perceptrons are not able to learn certain

Can only learn linearly separable functions

But they can be the basis for larger structures

Which can learn more sophisticated conceptsWhich can learn more sophisticated concepts

Say that the networks have “

Layer Networks
Built from Perceptron Units

able to learn certain concepts

only learn linearly separable functions

But they can be the basis for larger structures

Which can learn more sophisticated conceptsWhich can learn more sophisticated concepts

Say that the networks have “perceptron units”

Problem With Perceptron

�Needs the output of a unit to be a
differentiable function

�That is: The learning rule relies on
minimizing the error. Finding
differentiating.

�Step functions aren’t differentiable. They �Step functions aren’t differentiable. They
not continuous

�Alternative threshold function
Must be differentiable

Must be similar to step function

�Sigmoid units used for
(There are other alternatives that may be used)

Perceptron Units

Needs the output of a unit to be a

That is: The learning rule relies on
minimizing the error. Finding minima by

differentiable. They are differentiable. They are

threshold function are to be used

Must be similar to step function

units used for backpropagation
(There are other alternatives that may be used)

Sigmoid Units

Take in weighted sum of inputs, S

Then the out isoutput:

Advantages:

Looks very similar to the step function

Is differentiable

Derivative easily expressible in terms of

Take in weighted sum of inputs, S

Looks very similar to the step function

Derivative easily expressible in terms of σ itself:

Example ANN with Sigmoid Units

Feed forward network

Feed inputs on the left, propagate numbers forward

Suppose we have this ANN used for

With weights set arbitraryWith weights set arbitrary

Example ANN with Sigmoid Units

on the left, propagate numbers forward

ANN used for categoriztion

arbitraryarbitrary

Propagation of Example

With an example E:

Suppose the input to this ANN is 10

First calculate weighted sums to the hidden

SH1 = (0.2*10) + (-0.1*30) + (

SH2 = (0.7*10) + (-1.2*30) + (SH2 = (0.7*10) + (-1.2*30) + (

Next calculate the output from the hidden
σ(S) = 1/(1 + e-S)

σ(SH1) = 1/(1 + e-7) = 1/(1+0

σ(SH2) = 1/(1 + e5) = 1/(1+148

Propagation of Example

10, 30, 20

the hidden layer:

) + (0.4*20) = 2-3+8 = 7

) + (1.2*20) = 7-36+24= -5) + (1.2*20) = 7-36+24= -5

Next calculate the output from the hidden layer Using:

0.000912) = 0.999

148.4) = 0.0067

Propagation of Example

Next calculate the weighted sums into

the output layer:

SO1 = (1.1 * 0.999) + (0.1 * 0

SO2 = (3.1 * 0.999) + (1.17 *

Finally, calculate the output from the ANNFinally, calculate the output from the ANN

σ(SO1) = 1/(1+e-1.0996) = 1/(1+

σ(SO2) = 1/(1+e-3.1047) = 1/(1+

Output from O2 > output from O1

So, the ANN predicts category associated with O

For the example input (10,30,20

Propagation of Example

Next calculate the weighted sums into

0.0067) = 1.0996

* 0.0067) = 3.1047

Finally, calculate the output from the ANNFinally, calculate the output from the ANN

+0.333) = 0.750

+0.045) = 0.957

1

So, the ANN predicts category associated with O2

20)

Propagate E through the Network

Feed E through the network (as in example above)

Record the target and observed values for example E

i.e., determine weighted sum from hidden units, do sigmoid calc

Let ti(E) be the target values for output unit

Let oi(E) be the observed value for output unit Let oi(E) be the observed value for output unit

For categorisation learning tasks,

Each ti(E) will be 0, except for a single

But oi(E) will be a real valued number between

Also record the outputs from the hidden units

Let hi(E) be the output from hidden unit

Propagate E through the Network

Feed E through the network (as in example above)

Record the target and observed values for example E

i.e., determine weighted sum from hidden units, do sigmoid calc

(E) be the target values for output unit i

(E) be the observed value for output unit i(E) be the observed value for output unit i

categorisation learning tasks,

, except for a single tj(E), which will be 1

(E) will be a real valued number between 0 and 1

Also record the outputs from the hidden units

(E) be the output from hidden unit i

Backpropagation
Learning Algorithm

Same task as in perceptrons

Learn a multi-layer ANN to correctly categorise unseen examples

We’ll concentrate on ANNs with one hidden layer

Overview of the routine

Fix architecture and sigmoid units within architecture

i.e., number of units in hidden layer; the way the input units represent
example; the way the output units categorises examples

Randomly assign weights to the

Use small values (between –0.5

Use each example in the set to retrain the weights

Have multiple epochs (iterations through training set)

Until some termination condition is met (not necessarily

Backpropagation
Learning Algorithm

layer ANN to correctly categorise unseen examples

We’ll concentrate on ANNs with one hidden layer

Fix architecture and sigmoid units within architecture

i.e., number of units in hidden layer; the way the input units represent
example; the way the output units categorises examples

Randomly assign weights to the the whole network

5 and 0.5)

Use each example in the set to retrain the weights

Have multiple epochs (iterations through training set)

Until some termination condition is met (not necessarily 100% acc)

Weight Training

The Back propagation algorithm is

1. start at the output layer and

2. propagate error backwards through

the hidden layer

• Use notation w to specify: Weight between unit • Use notation wij to specify: Weight between unit

• Look at the calculation with respect to example E

• Calculate a value ∆ij for each wij

• Do this by calculating error terms

• The error term for output units is found And then this
information is used to calculate the error terms for the
hidden units

So, the error is propagated back through the ANN

The Back propagation algorithm is

. propagate error backwards through

Weight between unit i and unit jWeight between unit i and unit j

Look at the calculation with respect to example E

ij And add ∆ij on to wij

error terms for each unit

The error term for output units is found And then this
information is used to calculate the error terms for the

through the ANN

Error terms for each unit

The Error Term for output unit k is calculated as:

The Error Term for hidden unit k is:

i.e. For hidden unit h, add together all the errors
for the output units, multiplied by the
appropriate weight. Then
hk(E)(1 – hk(E))

Error terms for each unit

The Error Term for output unit k is calculated as:

The Error Term for hidden unit k is:

hidden unit h, add together all the errors
for the output units, multiplied by the

weight. Then multiply their sum by

Final Calculations
Choose a learning rate, η (= 0

For each weight wij

Between input unit i and hidden

Calculate: ∆ wiij= ηδHi

Where x is the input to the system to input unit Where xi is the input to the system to input unit

For each weight wij between hidden unit

Calculate: ∆ wiij= ηδOi hi (E)

Where hi(E) is the output from hidden unit

Finally, add on each ∆wij on to

Final Calculations
0.1 say)

hidden unit j

Hi xi

is the input to the system to input unit i for E is the input to the system to input unit i for E

hidden unit i and output unit j

(E)

(E) is the output from hidden unit i for E

on to wij

Worked Backpropagation
Example

Start with the previous ANN

We will retrain the weights

In the of example E = (10

Assume that E should have been categorised as
(not O2 as the calculated result)

Will use a learning rate of

Worked Backpropagation

Start with the previous ANN

will retrain the weights

10,30,20)

that E should have been categorised as O1
as the calculated result)

Will use a learning rate of η = 0.1

Previous Calculations

Need the calculations from when we
propagated E through the ANN:

o1(E) = 0.750 and o2(E) =

t1(E) = 1 and t2(E) = 0 [Assumption says it
should be O1]

Previous Calculations

Need the calculations from when we
propagated E through the ANN:

(E) = 0.957

[Assumption says it

Error Values for Output Units

t1(E) = 1 and t2(E) =
o2(E) = 0.957

So:So:

Error Values for Output Units

(E) = 0 o1(E) = 0.750 and

Error Values for Hidden Units

Now: δO1 = 0.0469 and δO2

h1(E) = 0.999 and h2(E) =
from the table)

So, for H1, we add together:So, for H1, we add together:

(w11*δ01) + (w12*δO2) = (1.1*0

And multiply by: h1(E)(1-h1(E)) to give us:

δH1 = -0.0706 * (0.999 * (

For H2, we add together:

(w21*δ01) + (w22*δO2) = (0.1*0

And multiply by: h2(E)(1-h2(E)) to give us:

δH2 =-0.0414 * (0.067 * (

Error Values for Hidden Units

2 = -0.0394

(E) = 0.0067 (output of hidden

, we add together:, we add together:

0.0469)+(3.1*-0.0394) = -0.0706

(E)) to give us:

* (1-0.999)) = 0.0000705

0.0469)+(1.17*-0.0394) = -0.0414

(E)) to give us:

* (1-0.067)) = -0.00259

Calculation of Weight Changes

For weights between the input and hidden

each w And add ∆ on to weach wij And add ∆ij on to wij

Calculation of Weight Changes

For weights between the input and hidden layer

ij

Calculation of Weight Changes

For weights between hidden and output layer

Weight changes are not very large
Small differences in weights can make big differences in calculations

But it might be a good idea to increase

Calculation of Weight Changes

For weights between hidden and output layer

changes are not very large
Small differences in weights can make big differences in calculations

But it might be a good idea to increase η

Calculation of Network Error

Could calculate Network error as
Proportion of mis-categorised examples

But there are multiple output units, with numerical output
So we use a more sophisticated measure:

Square the difference between target and observed

Squaring ensures we get a positive number

Add up all the squared differences
For every output unit and every example in training set

Calculation of Network Error

Could calculate Network error as
categorised examples

But there are multiple output units, with numerical output
So we use a more sophisticated measure:

the difference between target and observed

Squaring ensures we get a positive number

Add up all the squared differences
For every output unit and every example in training set

The algorithm is composed of two parts that get repeated

over and over a number of epochs

I. The feedforward : the activation values

and then output units are computed.

Backpropagation Training
Algorithm

and then output units are computed.

II. The backpropagation : the weights of the network

are updated--starting with the hidden to output

weights and followed by the input to hidden weights

with respect to the sum of squares

Rule.

algorithm is composed of two parts that get repeated

epochs.

the activation values of the hidden

and then output units are computed.

Training

81

and then output units are computed.

the weights of the network

starting with the hidden to output

weights and followed by the input to hidden weights--

with respect to the sum of squares error, the Delta

Backpropagation Training
Algorithm

Until all training examples produce the correct value (within

mean squared error stops to decrease, or other termination

criteria:

Begin epoch

For each training example, E, For each training example, E,

Calculate network output for

Compute error between current output and correct

output or E

Update weights by backpropagating

learning rule

End epoch

Training

all training examples produce the correct value (within ε), or

decrease, or other termination

E, do:

82

E, do:

Calculate network output for E’s input values

Compute error between current output and correct

backpropagating error and using

Backpropagation: The Momentum
Backpropagation has the disadvantage of being too

slow if η, the learning rate,
oscillate too widely if η is large.

To solve this problem, we can add a
give each connection some inertia, forcing it to
change in the direction of the downhill “force

Old Delta Rule: ∆ w = ηδ xOld Delta Rule: ∆ wiij= ηδHi xi

New Delta Rule: ∆ wiij(t+1) =

And ∆ wiij(t+1) =

where i,j are any input and hidden, or, hidden and output units;

t is a time step or epoch;

and αααα is the momentum parameter which regulates the amount of

inertia of the weights.

: The Momentum
has the disadvantage of being too

, the learning rate, is small and it can
is large.

To solve this problem, we can add a momentum to
give each connection some inertia, forcing it to
change in the direction of the downhill “force”.

, ∆ w = ηδ h (E)

83

i , ∆ wiij= ηδOi hi (E)

) = η δHi xi + αααα ∆ wiij(t)

) = η δOi hi (E)+ αααα ∆ wiij(t)

are any input and hidden, or, hidden and output units;

is the momentum parameter which regulates the amount of

�Not guaranteed to converge to zero training error,

may converge to local optima or oscillate

indefinitely.

� In practice, it does converge to low error for many

large networks on real data.

Backpropagation Training
Algorithm

large networks on real data.

�Many epochs (thousands) may be required, hours

or days of training for large networks.

�To avoid local-minima problems, run several trials

starting with different random weights (

restarts).

Not guaranteed to converge to zero training error,

may converge to local optima or oscillate

converge to low error for many

large networks on real data.

Training

84

large networks on real data.

Many epochs (thousands) may be required, hours

or days of training for large networks.

minima problems, run several trials

starting with different random weights (random

Hidden Unit Representations

Trained hidden units can be seen as newly
constructed features that make the target concept
linearly separable in the transformed space.

On many real domains, hidden units can be
interpreted as representing meaningful features interpreted as representing meaningful features
such as vowel detectors or edge detectors, etc..

However, the hidden layer can also become a
distributed representation of the input in which
each individual unit is not easily interpretable as a
meaningful feature.

Hidden Unit Representations

Trained hidden units can be seen as newly
constructed features that make the target concept
linearly separable in the transformed space.

On many real domains, hidden units can be
interpreted as representing meaningful features

85

interpreted as representing meaningful features
such as vowel detectors or edge detectors, etc..

However, the hidden layer can also become a
distributed representation of the input in which
each individual unit is not easily interpretable as a

ANN Representing function

Boolean functions: Any Boolean
represented by a two-layer network with sufficient
hidden units.

Continuous functions: Any bounded continuous
function can be approximated with arbitrarily small function can be approximated with arbitrarily small
error by a two-layer network.

Arbitrary function: Any function can be
approximated to arbitrary accuracy by a three
layer network.

ANN Representing function

Boolean function can be
layer network with sufficient

Any bounded continuous
function can be approximated with arbitrarily small

86

function can be approximated with arbitrarily small
layer network.

Any function can be
approximated to arbitrary accuracy by a three-

Applications of ANNs

Fraud detection

9 of top 10 US credit card companies use Falcon uses neural
nets to model customer behavior, identify fraud claims

Prediction & Financial Analysis
In Banks: financial forecasting, investing, marketing analysis

control & optimization
� Intel – computer chip manufacturing quality control� Intel – computer chip manufacturing quality control
� AT&T (cell phones) – echo & noise control in phone lines (filters

and compensates)
� Ford engines utilize neural net chip to diagnose

reduce emissions

Text to Speech (NetTalk)

Handwriting recognition

Face recognition

Optical character recognition (OCR)

Game Playing

Applications of ANNs

US credit card companies use Falcon uses neural
nets to model customer behavior, identify fraud claims

Prediction & Financial Analysis
In Banks: financial forecasting, investing, marketing analysis

computer chip manufacturing quality control

87

computer chip manufacturing quality control
echo & noise control in phone lines (filters

Ford engines utilize neural net chip to diagnose misfirings,

Optical character recognition (OCR)

