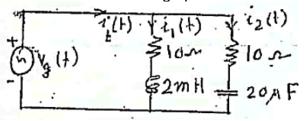


AC Circuits 1 1st year Dr. Omar Bakry

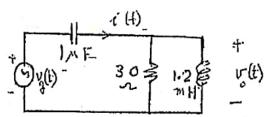
SHEET 7 AC TIME DOMAIN ANALYSIS

Problem [1]:


In the circuit shown below, $v_g(t) = 100\cos(8000t) V$. Find i(t) and $v_o(t)$. Sketch $v_o(t)$, i(t), and $v_o(t)$ on the same graph. Calculate the P.F. and the average power.

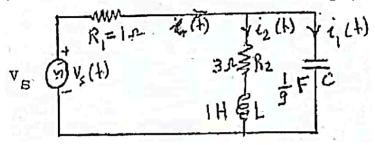
Answers:
$$i(t) = 0.1 \cos(8000t - 36.87^{o}) A$$
, $v_o(t) = 50 \cos(8000t - 100.30^{o}) V$, $P.F. = 0.8 \ Lagging$, $P_{avg} = 4W$.

Problem [2]:


In the circuit shown below, if $v_g(t) = 100 \sin(5000t) V$. Find $i_1(t)$, $i_2(t)$ and $i_t(t)$ and sketch their waveforms on the same graph. Calculate the average power.

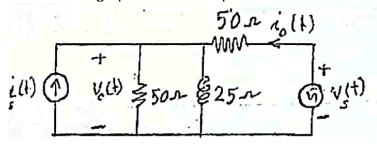
Answers:
$$i_1(t) = 5\sqrt{2}\sin(5000t - 45^o)A$$
, $i_2(t) = 5\sqrt{2}\sin(5000t + 45^o)A$ $i_t(t) = 10\sin(5000t)A$, $P_{avg} = 500W$

Problem [3]:


In the circuit shown below, if $i_t(t) = 0.5\sqrt{10}\cos(50000t + 18.43^o)$ A. Find $v_o(t)$, $v_g(t)$ and calculate the P.F. and P_{avg} .

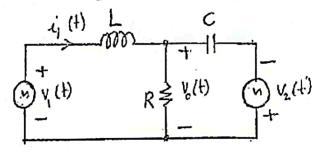
Answers:
$$v_o(t) = 30\sqrt{2}\cos(50000t + 45^o)V$$
, $v_g(t) = 40\cos(50000t)V$
 $P.F. = 0.9487 \ Leading$, $P_{avg} = 30W$

Problem [4]:


In the circuit shown below, $i_1(t) = 2\sqrt{2}\cos(3t + 81.9^o)A$. Find $i_2(t)$, i(t), and $v_s(t)$. Calculate the average power consumption and sketch the waveforms on the same graph.

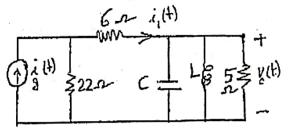
Answers:
$$i_2(t) = 2\cos(3t - 53.1^o) A$$
, $i(t) = 2\cos(3t + 36.87^o) A$
 $v_s(t) = 10\cos(3t) V$, $P_{avg} = 8W$

Problem [5]:


In the circuit shown below, if $i_s(t) = 2\sqrt{2}\sin(\omega t + 45^o)A$ and $v_s(t) = 100\sin(\omega t)$, find $v_o(t)$ and $i_o(t)$. Calculate the average power consumption in R1 and R2.

Answers:
$$v_o(t) = 25\sqrt{10}\sin(\omega t + 71.565^o)V$$
, $i_o(t) = 1.5\sqrt{2}\sin(\omega t - 45^o)A$
 $P_{avg}(in\ R1) = 62.5W$, $P_{avg}(in\ R2) = 112.5W$

Problem [6]:


In the circuit shown below, $v_1(t)=20\cos(\omega t-31.87^o)V$, $v_2(t)=50\cos(\omega t+73.74^o)V$, $\omega=2000~rad/s$, $R=10\Omega$, L=1mH and $C=100\mu F$. Use source transformations to find $v_o(t)~and~i_1(t)$. Calculate the average power consumption in R.

Answers:
$$v_o(t) = 36\cos(\omega t) V$$
, $i_1(t) = 11.66\sin(\omega t - 120.96^o) A$
 $P_{avg} = 64.8W$

Homework:

In the circuit shown below, $i_g(t) = 3\cos(200t) A$, L = 2mH and C = 12.5mF. Find $v_o(t)$ and $i_1(t)$. Calculate the average power supplied by $i_g(t)$ and that in dissipated in the circuit. Check the power balance.

