

ELC2020

Electronics I MOSFET Devices Lecture (2)

Dr. Omar Bakry

omar.bakry.eece@gmail.com

Department of Electronics and Electrical Communications
Faculty of Engineering
Cairo University
Fall 2023

NMOS vs PMOS

- Two polarities of FETs: NMOS and PMOS
- Body potentials (p-substrate and N-Well) should reversebias all P-N junctions
 - We don't want current to flow through the substrate (BULK)

The Threshold Voltage V_{th}

- Threshold voltage (V_{th}) is the value of V_{GS} at which a sufficient number of electrons accumulate in the channel \rightarrow strong inversion
 - V_{th} is +ve for NMOS and -ve for PMOS.
- V_{th} range is 0.2V 0.7V in modern technologies (typically ~0.4V).
 - High V_{TH} (HVT), Regular V_{TH} (RVT), and Low V_{TH} (LVT), Ultra-low V_{TH} (ULVT)
- When $V_{GS} < V_{th}$
 - This region is called sub-threshold region
 - Channel weak inversion
 - Small exponential current flows from drain to source

•
$$I_{ds} = I_{ds0} \times \exp\left(\frac{V_{GS} - V_{th}}{nV_T}\right)$$

- $I_{ds0} = I_{ds}|_{V_{GS} = V_{th}}$
- $V_T = \frac{kt}{q} \sim 25mV$ @ room tempreture

The Capacitor Charge

- The gate and the channel region forms a parallel plate capacitor with the oxide layer acting as capacitor dielectric.
- The voltage across the parallel plate capacitor must exceed V_{th} for a channel to form and be in strong inversion.
- The excess voltage of V_{GS} over V_{th} is termed the effective voltage or overdrive voltage that determines the charge in the channel $(VGS V_{th}) = V_{ov}$
- When $V_{DS} = 0$, the voltage at every point along the channel is zero, and the voltage across the oxide is uniform and equal to V_{GS} .

The Capacitor Charge

• The charge across the parallel plate capacitor is defined as

$$Q = C \times V = C_{ox} (W.L) \times (V_{GS} - V_{th})$$

 C_{ox} is the oxide capacitance per unit area

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} =$$
, where t_{ox} is the oxide thickness, $\epsilon_{ox} \sim 3.9 \epsilon_o$ is the permittivity constant of silicon dioxide, and ϵ_o is the permittivity of air

Plate area A
$$C = \frac{\mathcal{E}A}{d} = \frac{k\mathcal{E}_0A}{d}$$

Channel width and length

 $Q \propto V_{ov}$ As the over drive voltage $(V_{GS} - V_{th})$ increases, the magnitude of the charge increases.

Applying a Small V_{DS} – Uniform Channel

- When a small +ve voltage V_{DS} between drain and source (+50mv or so) is applied, the voltage causes current to flow from drain to source opposite to electron flow.
- Since V_{DS} is small, we can assume that the voltage between the gate and various points along the channel is approximately constant and equal to $\sim V_{GS}$.

• Therefore, we assume the channel is uniform between drain and source.

Applying a Small V_{DS} – The Electric Field

- The total charge of the parallel plate capacitor $Q = C_{ox}WL(V_{GS} V_{th})$.
 - Q is proportional to $(V_{GS} V_{th})$.
- The voltage V_{DS} establishes an electric field $|E| = \frac{V_{DS}}{L}$.
- This electric field causes electrons to move from source to drain with drift velocity v_d .
- As we know from physics $v_d = \mu_n |E| = \mu_n \frac{v_{DS}}{L}$.
- The current is defined as the total charge/unit time:

$$I_{ds} = \frac{Q}{t} = \frac{C_{ox}WL(V_{GS} - V_{th})}{t}$$

• But $\frac{L}{t} = v_d = \mu_n \frac{V_{DS}}{L}$.

Applying a Small V_{DS} – The I_{ds} Current

•
$$I_{ds} = \frac{C_{ox}W(V_{GS} - V_{th})\mu_n V_{DS}}{L}$$

• Rearranging,

$$I_{ds} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{th}) V_{DS}$$

- We can write $I_{ds} = gV_{DS}$ where g is the conductance of the channel.
- $g = \mu_n C_{ox} \frac{W}{L} (V_{GS} V_{th}).$
- We call the term $\mu_n C_{ox} = K'_n$ which depends on fabrication process.
- The term $\frac{W}{L}$ is called the aspect ratio of the transistor.
- Let $K_n = K'_n \frac{W}{L}$

Applying a Small V_{DS} – Voltage Controlled Resistance

Then,

$$g = K_n(V_{GS} - V_{th}) = \frac{1}{r_{ds}}$$

where r_{ds} is the resistance between source and drain for small V_{DS} .

$$r_{ds} = \frac{1}{g} = \frac{1}{K_n(V_{GS} - V_{th})} = \frac{1}{\mu_n C_{ox} \frac{W}{L} V_{ov}}$$

- This resistance can be controlled by changing the value of $V_{ov} = V_{GS} V_{th}$
- As we can see for small values of V_{DS} , the MOSFET can be considered as a voltage-controlled resistor .
- This region of operation is called *linear or triode region*.

Linear/Triode Region of Operation

- This figure shows linear or triode region of operation.
- In this region the relation between the current and the voltage is linear i.e the transistor can be modeled by a linear resistance:

$$I_{ds} = \frac{V_{DS}}{r_{ds}} = K_n (V_{GS} - V_{th}) V_{DS}$$

$$r_{ds} = \frac{1}{K_n (V_{GS} - V_{th})}$$

• This resistance decreases by increasing V_{GS} .

Operation as V_{DS} is increased

- For the MOSFET to conduct a current, a channel must be induced by increasing V_{GS} above the threshold voltage V_{th} (enhancement mode of operation)
- Let $V_{GS} > V_{th}$ be <u>constant</u> and increase V_{DS}
- V_{DS} appears as the voltage drop across the channel length.
- The voltage measured relative to the source increases from zero at the source to V_{DS} at the drain.

Figure 5.5 Operation of the enhancement NMOS transistor as v_{DS} is increased. The induced channel acquires a tapered shape, and its resistance increases as v_{DS} is increased. Here, v_{GS} is kept constant at a value $v_{CS} > V_{CS} >$

Operation as V_{DS} is increased

- The voltage between the gate and points along the channel increases from V_{GS} at the source to $V_{GD} = V_{GS} V_{DS}$ at the drain.
- The channel is no longer uniform, it will be tapered being deepest at the source and shallowest at the drain.
- The channel depth at the source is proportional to $(V_{GS} V_{th})$
- The channel depth at the drain is proportional to $(V_{GS} V_{th} V_{DS})$

Figure 5.5 Operation of the enhancement NMOS transistor as v_{DS} is increased. The induced channel acquires a tapered shape, and its resistance increases as v_{DS} is increased. Here, v_{GS} is kept constant at a value $v_{CS} = V_t + V_{OV}$.

Operation as V_{DS} is increased

- Therefore, charge in this case is proportional to $(V_{GS} V_{th} V_{DS}/2)$
- And the current now can be written as $I_{ds} = K_n(V_{GS} V_{th} V_{DS}/2)VDS$

$$I_{ds} = K_n \left[(V_{GS} - V_{th})V_{DS} - \frac{V_{DS}^2}{2} \right]$$

- Relationship between I_{ds} and V_{DS} is quadratic.
 - We are still in the triode region.

The Saturation Region

• As V_{DS} is increased to $V_{DS} = V_{GS} - V_{th}$, the channel depth at the drain end reduces to almost zero.

Figure 5.8 Operation of MOSFET with $v_{GS} = V_i + V_{OV}$, as v_{DS} is increased to V_{OV} . At the drain end, v_{GD} decreases to V_i and the channel depth at the drain end reduces to zero (pinch off). At this point, the MOSFET enters the saturation mode of operation. Further increasing v_{DS} (beyond $V_{Dout} = V_{OV}$) has no effect on the channel shape and i_D remains constant.

Pinch Off – The Saturation Region Current

- When $V_{DS} = V_{GS} V_{th}$, the channel is said to be pinched off at the drain.
- Increasing $V_{DS} > V_{GS} V_{th}$ has no effect on the channel shape and the current remains constant.
- Substituting $V_{DS} = V_{GS} V_{th}$ in the current equation results in

$$I_{ds} = \frac{K_n}{2} (V_{GS} - V_{th})^2$$

• Pinch off doesn't mean block of current it continues to flow through the channel from source to drain.

I/V Characteristics of an N Channel Enhancement MOSFET

The I_{DS} vs V_{DS} Characteristics

The I_{DS} vs V_{DS} Characteristics

The I_{DS} vs V_{GS} Characteristics

• V_{GS} must exceed V_{th} for the channel to be created and current to flow.

• In saturation region $V_{DS} \ge V_{GS} - V_{th}$, we have quadratic current

$$I_{ds} = \frac{K_n}{2} (V_{GS} - V_{th})^2$$

• The figure shown indicates this fact.

Summary: NMOS Regions of Operation

• Large signal terminal equations

Region	V_{GS}	V_{DS}	I_{DS}
Subthreshold	$V_{GS} \leq V_{th}$	N/A	$I_{ds} = I_{ds0} \times \exp\left(\frac{V_{GS} - V_{th}}{nV_T}\right)$
Triode	$V_{GS} > V_{th}$	$V_{DS} < V_{GS} - V_{th}$	$I_{ds} = K_n \left[(V_{GS} - V_{th})V_{DS} - \frac{V_{DS}^2}{2} \right]$
		$V_{DS} \ll V_{GS} - V_{th}$	$I_{ds} = K_n(V_{GS} - V_{th})V_{DS}$
Saturation	$V_{GS} > V_{th}$	$V_{DS} \geq V_{GS} - V_{th}$	$I_{ds} = \frac{1}{2} K_n (V_{GS} - V_{th})^2$

Example

- Consider a process technology for which $L_{min} = 0.4 \mu m$, $t_{ox} = 8nm$, $\mu_n = 450 cm^2/vsec$ and $V_{th} = 0.7V$
- a) Find C_{ox} and K'_n .
- b) For a MOSFET with $W/L = 8\mu m/0.8\mu m$, calculate the values of V_{ov} , V_{GS} and $V_{DS,min}$ needed to operate the transistor in the saturation region with a DC current $I_{DS} = 100\mu A$.
- c) For the device in b find the values of V_{ov} and V_{GS} to cause the device to operate as a 1000Ω resistor for very small V_{DS} .

Solution

•
$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{3.45 \times 10^{-11}}{8 \times 10^{-9}} = 4.32 \times 10^{-3} \ F/m^2$$
.
 $K'_n = \mu_n C_{ox} = 450 \left(\frac{cm^2}{vsec}\right) \times 4.32 \times 10^{-3} \left(\frac{F}{m^2}\right) = 450 \times 10^{-4} \left(\frac{m^2}{vsec}\right) \times 4.32 \times 10^{-3} \left(\frac{F}{m^2}\right)$

$$= 1.944 \times 10^{-4} \frac{A}{V^2}$$

• To operate in saturation region with $I_{DS} = 100 \mu A$ $I_{DS} = \frac{K'_n}{2} \frac{W}{L} V_{ov}^2 = 100 \times 10^{-6} = \frac{1.944 \times 10^{-4}}{2} \times \frac{8}{0.8} \times V_{ov}^2$ $V_{ov} = 0.32V = V_{GS} - V_{th}$ $V_{GS} = 0.32 + 0.7 = 1.02V.$ $V_{DS,min} = V_{ov} = 0.32V.$

•
$$r_{ds} = V_{DS}/I_{DS} = 1/(K'_n(W/L)(V_{GS} - V_{th}))$$

 $1000 = 1/(1.944 \times 10^{-4} \times 10)(V_{GS} - V_{th})$
 $V_{ov} = V_{GS} - V_{th} = 0.51V --- \rightarrow V_{GS} = 1.21V$

Exercise

- A circuit designer intending to operate a MOSFET in SATURATION is considering the effect of changing the device dimensions and operating voltages on the drain current I_{DS} . By what factor does I_{DS} change in each of the following cases
- a) The channel length is doubled.
- b) The channel width is doubled.
- c) The overdrive voltage is doubled.
- d) The drain to source voltage is doubled.
- e) Changes a,b,c,d are made simultaneously.

which of these cases might cause the MOSFET to leave saturation region?