

Cairo University
Faculty of Engineering
Department of Electronics
and Communications Engineering
Giza Campus

Midterm Exam - 23/11/2023

Electronics II - ELC2020

Fall Semester

NA:	140000	Exam
IVI	atern	ı exam

(25 points)

Name:

B.N.:

Section:

"I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code."

Signature:

Unless otherwise stated, in the following problems, use the device data shown in the following table and assume that VDD = 3V where necessary. All device dimensions are in microns.

1

Parameter	NMOS 0.7	PMOS 0.8	Units V
$ V_{th} $			
λ	0.1	0.2	V^{-1}
$K' = \mu C_{ox}$	139	38	$\mu A/V^2$

Question #1: (5 points)

Chose the correct answer for each of the following questions:

- 1. To reduce the channel length modulation effect (λ) of a MOS transistor,
 - a) Reduce L

b) Reduce W

each point

c) Increase L

- d) Increase W
- 2. For a MOSFET in SAT region, to keep the drain current constant while increasing the transistor's aspect ratio (W/L),
 - a) Increase V_{GS}

b) Reduce Vov

c) Reduce V_{GS}

- d) b and c
- 3. For a PMOS transistor in SAT region, the drain current is proportional to
 - a) $V_{GS} V_{THp}$

b) $V_{SG} - V_{THp}$

c) $V_{SG} + V_{THP}$

- d) $V_{SG} + |V_{THP}|$
- 4. For a PMOS as an ON switch, the lowest R_{on} is achieved when the gate is connected to
 - a) GND

b) VDD/2

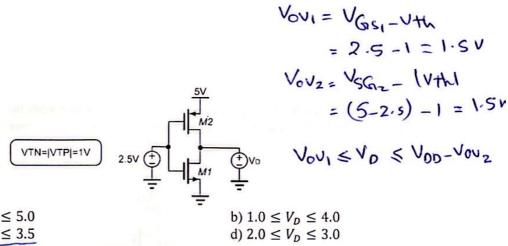
c) VDD

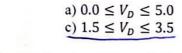
d) It depends

- 5. Which V_A corresponds to higher r_o ?
 - a) -50V

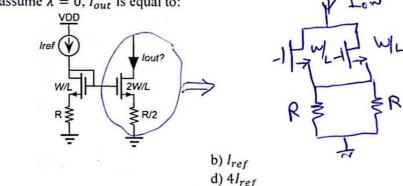
b) +50V

c) -100V

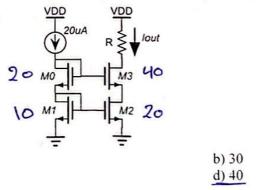

- d) + 100V
- 6. For two identical transistors having a size of (W/L) and are connected in series, the effective size of the combined two transistors is:
 - a) W/L


W /21

c) 2W/L


- d) 2W /21
- 7. For the circuit shown below, the FULL range of V_D that will simultaneously bias the NMOS and PMOS in the saturation region is:

Page 1/9

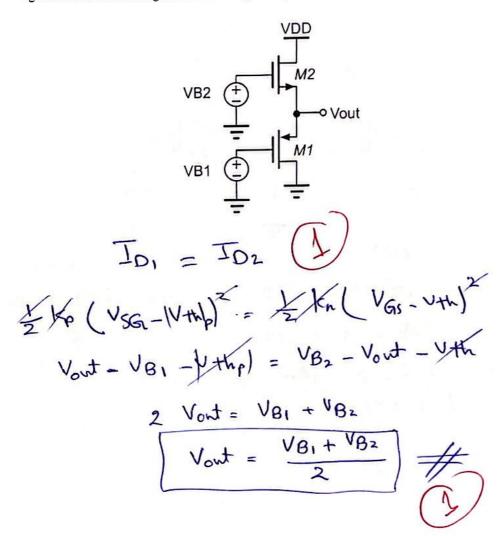

8. For the circuit shown below, assume $\lambda = 0$, I_{out} is equal to:

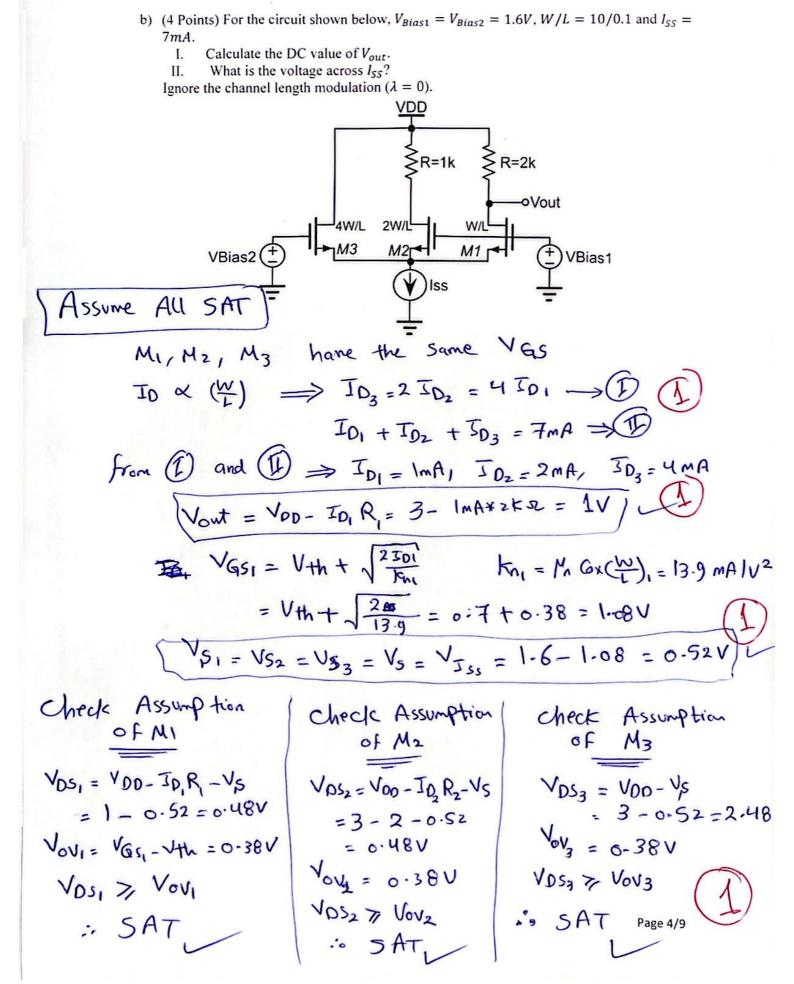

a) 0.5*l*_{ref} c) 2*l*_{ref}

a) 10c) 20

9. For the cascode current mirror shown below, assume all transistors are operating in saturation. If $(W/L)_0 = (W/L)_2 = 20$ and $(W/L)_1 = 10$. What should $(W/L)_3$ be for a proper operation?

10. For the common source amplifier shown below, assume M1 is in saturation and $\lambda = 0$. The small signal gain is:



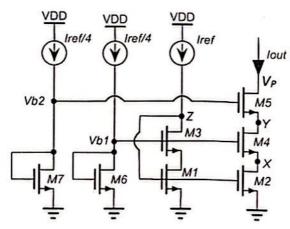

Page 2/9

Question #2: (6 points)

a) (2 Points) For the circuit shown below, derive an expression for the DC value of the V_{out} as a function of bias voltages V_{B1} and V_{B2} . Assume both transistors are in SAT, $K_p = K_n$ and $V_{THN} = |V_{THP}|.$

Ignore the channel length modulation ($\lambda = 0$).

Scanned with CamScanner


Question #3: (7 points)

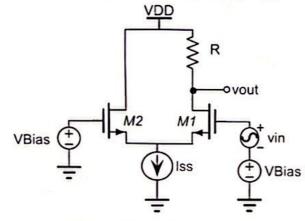
For the current mirror circuit shown below, $I_{ref} = 100\mu A$. M4 and M5 double cascode the current source M2. Transistors M1 – M5 are identical having size of W/L = 10/0.1.

Both M6 and M7 are used to bias cascode devices.

Assume all transistors are in saturation. Consider channel length modulation.

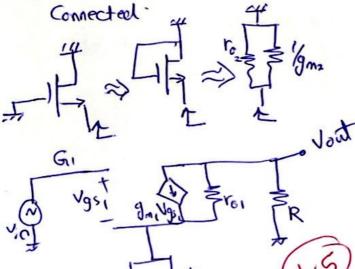
- a) What is Iout?
- b) What is the minimum value of V_p that ensures M2, M4 and M5 are in SAT?
- c) What is the optimal value of V_p that ensures there is no current mismatch between I_{out} and I_{ref} ?
- d) What is the optimal bias voltage V_{b1} for M3/M4?
- e) What is the optimal bias voltage V_{b2} for M5?
- f) What is the size of M7 $(W/L)_7$ required to generate the bias voltage V_{b2} obtained in (e)? Ignore λ in your calculations. Assume $V_{th} = 0.3V$.

$$\sqrt{\frac{0.1}{2 \times 0.139 + (\frac{10}{L})_{T}}} = 0.3 + \sqrt{\frac{0.2}{13.9}}$$


$$\frac{\left(\frac{V}{L}\right)_{7}}{1} = 1.234 = \frac{0.1234}{0.1}$$

Page 6/9

Question #4: (7 points)


For the amplifier shown below, assume M1 and M2 are identical and in saturation.

- a) What is the DC current in M1 and M2? (Ignore λ here only).
- b) What is the DC voltage of V_{out} ?
- c) What is the configuration of this amplifier?
- d) Draw the small signal model.
- e) Derive an expression for the amplifier transconductance (G_m)
- f) Derive an expression for the amplifier output impedance (R_{out})
- g) Derive an expression for the small signal gain $(A_v = v_{out}/v_{in})$

a)
$$T_{0_1} = T_{0_2} = \frac{T_{SS}}{2}$$
 $\Longrightarrow \lim_{L \to \infty} \lim_{L \to \infty} \frac{1}{2} \lim_{L \to \infty} \frac{1}$

d) M2 in small signal is diade

Scanned with CamScanner

