

ELC2020

Electronics II Differential Amplifiers — Lecture 2

Dr. Omar Bakry

omar.bakry.eece@cu.edu.eg

Department of Electronics and Electrical Communications

Faculty of Engineering

Cairo University

Fall 2023

11/29/2023

• Can this circuit be simplified into two half circuits

• What is the value of V_X

The circuit is similar to common source with source resistance

Neglecting r_o

$$v_{D1} = v_{D2} = -\frac{g_m R_D}{1 + 2g_m R_{SS}} v_{inCM}$$

Common mode gain is typically<<1

$$v_{D1} = v_{D2} = -\frac{g_m R_D v_{inCM}}{1 + 2g_m R_{SS}} \approx -\frac{R_D}{2R_{SS}} v_{inCM} (if \ 2g_m R_{SS} \gg 1)$$

Common Mode Rejection Ratio (CMRR)

- Being insensitive to common mode signals is one of the main advantages of the differential pair.
- CMRR is a measure of how ideal the differential pair is:

$$CMRR = \frac{|A_{DM}|}{|A_{CM}|}$$

- Ideally, CMRR goes to infinity.
- Factors degrading CMRR:
 - Mismatches between MOS, Resistors, current sources,
 - Tail current output resistance.

CMRR: Common Mode Rejection Ratio

- As long as the circuit is symmetric CM variations remains CM
- What is the impact of common mode variations in the presence of circuit asymmetry?
- In case the resistors are mismatched due to fabrication, and neglecting the channel length modulation:

$$\frac{V_{out1}}{V_{in,CM}} = -\frac{R_D}{1/g_m + 2R_{SS}}, \frac{V_{out2}}{V_{in,CM}} = -\frac{R_D + \Delta R_D}{1/g_m + 2R_{SS}}$$

$$V_{out,DM} = V_{out1} - V_{out2} = -\frac{\Delta R_D}{1/g_m + 2R_{SS}} V_{in,CM}$$

- In the presence of mismatches, input common mode variations introduce a differential component at the output!
- Could lead to input common mode noise appearing at the differential output

$$CMRR = \left| \frac{A_{dm}}{A_{cm}} \right| = \frac{g_m R_D}{\Delta R_D / (1/g_m + 2R_{SS})} = \frac{R_D + 2g_m R_{SS} R_D}{\Delta R_D} \approx \frac{2g_m R_{SS} R_D}{\Delta R_D}$$

Differential Pair Summary

- Differential pair rejects common mode noise
- DC voltage is the same on both sides
- Small signal input can be written as common mode component and differential mode component (superposition can be used)
- For differential mode, source node voltage = 0V due to symmetry
- For common mode, circuit can be split into two half circuits due to symmetry (no current from left half to right half)

Half-Circuit Analysis – Example

$$\frac{\mathbf{v}_{od}}{2} = -G_{m} \frac{\mathbf{v}_{id}}{2} (R_{D} / / \frac{R_{L}}{2}) = -\frac{g_{m1}}{1 + g_{m1} R_{S}} \frac{\mathbf{v}_{id}}{2} (R_{D} / / \frac{R_{L}}{2})$$

$$A_{d} = \frac{V_{od2} - V_{od1}}{V_{id}} = \frac{-V_{od}}{V_{id}} = \frac{g_{m1}}{1 + g_{m1} R_{S}} (R_{D} / / \frac{R_{L}}{2})$$

Current Source Load

Taking r_0 into account, and assuming $r_{01} = r_{02}$, and $r_{03} = r_{04}$:

$$A_d = g_{m1}(r_{o1} // r_{o3})$$

- High output impedance
- Single ended output
- Assume Q1 and Q2 has same g_m and r_o $g_{m1} = g_{m2} = g_{mn}, r_{o1} = r_{o2} = r_{on}$
- Assume Q3 and Q4 has same g_m and r_o $g_{m3} = g_{m4} = g_{mp}, r_{o3} = r_{o4} = r_{op}$

- KCL at output node $\rightarrow g_{mp}v_{g3} + g_{mp}v_{g3} + \frac{v_o}{r_{op}} = 0 \rightarrow v_{g3} = -\frac{v_o}{2g_{mp}r_{op}}$
- KCL at output node $\rightarrow g_{mp}v_{g3} = \frac{v_o v_s}{r_{on}} + g_{mn}\left(-\frac{v_{id}}{2} v_s\right)...(1)$
- KCL at v_{g3} node $\rightarrow -g_{mp}v_{g3} = \frac{v_{g3}-v_s}{r_{on}} + g_{mn}\left(\frac{v_{id}}{2} v_s\right)$... (2)
- Subtract (1)-(2) $\rightarrow 2g_{mp}v_{g3} = \frac{v_o v_{g3}}{r_{on}} g_{mn}v_{id}$, use $v_{g3} = -\frac{v_o}{2g_{mp}r_{op}} \rightarrow v_o \approx g_{mn}(r_{on} \parallel r_{op})$
- Note that v_s is not 0V (you can prove $v_s \sim v_{id}/4$)

- To get differential gain
 - Calculate transconductance G_m
 - Calculate R_{out}
 - Gain=G_mR_{out}
- Circuit is not symmetrical, half circuit concept cannot be used
 - When calculating Gm, output is short circuit to ground, v_S will be close to 0V (Need to prove it first, write KCL at v_{g3} and v_S nodes and get v_S as a function of v_{id})

•
$$v_{g3} pprox -\frac{g_{mn}}{g_{mP}} \frac{v_{id}}{2}$$
 , $i_o = \frac{g_{mn}v_{id}}{2} - g_{mp}v_{g3} = g_{mn}v_{id}$

• Hence $G_m = g_{mn}$

•
$$v_{g3} = \frac{i_{x1}}{g_{mp}}$$

$$\bullet \ i_{x} = 2i_{x1} + \frac{V_{x}}{r_{op}}$$

$$R_3 = r_{on} + R_2 + g_{mn}r_{on}R_2 \approx 2r_{on}$$

•
$$R_1 = \frac{1}{g_{mp}}$$

•
$$R_2 = \frac{r_{on} + 1/g_{mp}}{g_{mn}r_{on}} \approx \frac{1}{g_{mn}}$$

•
$$R_3 = r_{on} + R_2 + g_{mn}r_{on}R_2 \approx 2r_{on}$$

•
$$i_{\chi 1} = \frac{V_{\chi}}{R_3}$$

•
$$i_x = 2i_{x1} + \frac{V_x}{r_{op}} = 2\frac{V_x}{R_3} + \frac{V_x}{r_{op}} = \frac{V_x}{r_{on} \| r_{op}}$$

•
$$R_{out} = r_{on} \parallel r_{op}$$

•
$$A_{dm} = G_m R_{out} = g_{mn} r_{on} \parallel r_{op}$$

Common Mode Gain Analysis

• Neglecting r_{on.} KCL at source node

$$v_S = 2g_{mn}(v_{iCM} - v_S)R_{SS}$$

$$v_S = \frac{2g_{mn}R_{SS}v_{iCM}}{1 + 2g_{mn}R_{SS}}$$

$$v_{gS} = \frac{v_{iCM}}{1 + 2g_{mn}R_{SS}}$$

•
$$v_{g3} = -\frac{g_{mn}v_{iCM}}{1+2g_{mn}R_{SS}} \left(\frac{1}{g_{mp}} \parallel r_{op}\right)$$

• KCL at output node
$$\frac{g_{mn}v_{iCM}}{1 + 2g_{mn}R_{SS}} + g_{mp}v_{g3} + \frac{v_o}{r_{op}} = 0$$

$$v_{o} = -\frac{g_{mn}v_{iCM}}{1 + 2g_{mn}R_{SS}} \frac{r_{op}}{1 + g_{mp}r_{op}} \approx -\frac{1}{2g_{mp}R_{SS}}v_{icm}$$

$$A_{cm} = \frac{v_o}{v_{icm}} = -\frac{1}{2g_{mp}R_{ss}}$$

