Faculty of Engineering – Cairo University Electronics and Electrical Communications Department ELC2020 – Electronics II – Fall2023 Dr. Omar Bakry

Assignment (10 points), Due date: 16/12/2023*

*Late submission policy: you lose 2.5 points per each day

Problem (1): For the common source amplifier shown below, assume M1 and M2 are in saturation.

- a) Draw the small signal model.
- b) Derive an expression for the amplifier transconductance (G_m)
- c) Derive an expression for the amplifier output impedance (R_{out})
- d) Derive an expression for the small signal gain $(A_v = v_{out}/v_{in})$

Problem (2): The figure shown below shows a cascode current mirror. Assume all transistors are operating in SAT region. Assume all devices are identical.

- a) Derive an expression for the small signal resistance looking at the output (Rout) in terms of small signal transistor parameters.
- b) Derive an expression for the small signal resistance looking at the input (Rin) in terms of small signal transistor parameters.

Problem (3): For amplifier shown below, assume $\lambda = 0$ and all devices are identical and in saturation. $V_{th} = 1V$, and $V_{BIAS} = 2.5V$.

- a. Draw the small signal model.
- b. Derive an expression for the amplifier transconductance (G_m)
- c. Derive an expression for the amplifier output impedance (R_{out})
- d. Derive an expression for the small signal gain $(A_v = v_{out}/v_{in})$
- e. What is the minimum voltage of VDD such that all the transistors are saturated?

Problem 4: Derive an expression for the transconductance $G_m = i_{out}/(v_1 + v_2)$ of the circuit below. Assume all transistors are in saturation. Ignore channel length modulation. Assume M1-4 are matched, and M5-6 are matched.

