1. Calculate the volume of the cylinder. $Volume = \frac{\pi}{4} d^2 h$

I/O Example

Enter cyliner diameter: 5 Enter cyliner height: 3 Cylinder volume = 58.9049

2. Calculate the volume of cuboid. Volume = length * width * height

I/O Example

Enter cuboid length: 2 Enter cuboid width: 3 Enter cuboid height: 4 cuboid volume = 24

3. Represent a point (x,y) in cylindrical form (ρ, φ) $\rho = \sqrt{x^2 + y^2} \varphi = tan^{-1} \left(\frac{y}{x}\right)$

I/O Example

Enter X: 10
Enter Y: 6
Rou =
 11.6619
Phi in radian =
 0.5404
Phi in degree =
 30.9638

4. Calculate the distance between two points (x1, y1) and (x2, y2)

$$dist = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

I/O Example

Enter X1: 2 Enter Y1: 4 Enter X2: 3 Enter Y2: 5 Distance =

5. Given number of minutes, calculate the number of hours and the remaining minutes.

For example, 385 minutes = 6 hours + 25 minutes

I/O Example

1.4142

Enter minutes: 385

Hours =

6

Minutes =

25

6. Calculate the equivalent of N days in years, months and days. (1 year = 365 day) (1 month = 30 day) For example, 3724 day = 10 years + 2 months + 14 day

I/O Example

Enter number of days: 3724

Years =

10

Months =

2

days =

14

7. Calculate the number of garages needed for parking of X cars if each garage capacity is Y cars. For example, If X = 18 cars & Y = 7 car, the number of garages needed is 3.

I/O Example

Enter number of cars: 18
Enter garage capacity: 7
number of garages =

8. A Spherical-shape glass of radius (r = 3) inches. If water is poured into the glass at (rate = 2) gallons per hour, write a program to calculate how long it takes to fill in the glass.

1 gallon = 7.5 $feet^3$ and 1 feet = 12 inch (Note: spherical volume = $\frac{4}{3}\pi r^3$)

I/O Example

Enter spherical raduis in inch: 3

Enter water rate in gallons per hour: 2

time in hours =

0.0044

time in minutes =

0.2618

time in seconds =

15.7080