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The Prediction of Motion of an Artificial Satellite
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ABSTRACT

In this paper the solution of an artificial satellite motion under the influence of J,-Earth’s gravitational
field in terms of Euler parameters that was solved using recurrent power series solution which is one of
the semi-analytical solutions. Applications of the method enable anyone to predict the motion of the
artificial satellite in any conic section. This expected because the only force affecting on the motion of
artificial satellite is Earth’s gravitational field.
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INTRODUCTION

Orbit prediction of artificial satellites become one of the most important problems at present, due to
their wide applications in scientific researches, mission planning and military purposes, ... etc.

There are many transformations have emerged in the literature in the recent past, one of the famous
of them is the set of Eulerain redundant parameters
[1], [2].[3] [4].[5]and [6] These parameters combine between orbit dynamics and rigid body dynamics,
and they are valid for any type of orbital motion.
In this paper, we use a recurrent power series solution of the Eulerian perturbed differential equations of
motion depending on Taylor series expansion to get the classical elements of the satellite at any time.

FORMULATION OF THE PROBLEM
Generally, the equations of motion of an artificial satellite are given generally as

52+:1—3)7:§ (2.2)

where X is the relative position vector, I = |7(| u is the Earth's gravitational constant, P is the all

X
perturbing forces, and V is the perturbed time-independent potential, which can be expressed as

V=g SR/ r) L (k)

where R is the Earth's equatorial radius, J; is the non-dimensional coefficient of the Earth's potential and
L; is the Legendre polynomial of order i.
In our case the only force acting on an artificial satellite is that due to the Earth's oblateness, so we have

P =0, 2.2.1)
3 _
:qu X§ r

where 2= uR*J;, r=,/xf+x22+x32.

Eq.(2.1) are the basic classical equations of motion of artificial satellites and the corresponding one in

perturbing forces, which equals to (— %—Y + P j , hence P is the resultant of all non-conservative

5

_lq r-s 222
5 2 (2.22)

terms of the Euler parameters with ¢ (perturbed true anomaly) as independent variable [3],

y1’ = 0-5( Wy Y, + Wy yz)i (2.3.1)
y; =0.5( w,y,—w,y,), (23.2)
yé =0.5(— Wy Y, + W, y4)1 (2.3.3)
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y; =0.5(-=w, y, —w;Y;), (2.3.4)

Y = Yo, (2.3.5)
1 P 2V

Yo == Yg+—————+ _ 92 Y (2.3.6)

Yo HYSY: HYsY: 2V,

, 2w, P’ 2 ov 2 oV _
y:=0,= —L+ _ e [{ 'X}+2V} (2.3.7)

nys yiJuty, ot pys\L&X
, 1
Yo =—F 77— (2.3.8)
ye VH Y
where
PC
Wy=—""—"5—, (2.4.1)
H W3 Ys Yq
2V
Wy = [1-——, (2.42)
uysy,

Pe: =C, B+C, P, +C, By, (2.5.1)
Pﬂ* =C21 Pl* +C22 PZ* +C23 P; ) (2.5.2)
Pg :C31 Pl +(:32 Pz +(:33 Ps ' (2.5.3)
Cu=Yi—¥z=Ys+ Vs, 26.1)
Cp, :Z(Y1 YotYs y4)’ (2.6.2)
Cp=2 (Y1 Ys— Y, y4) ’ (2.6.3)
Cau :Z(Y1 Yo=Y y4) ’ (2.7.1)
Co==Yi +¥2 = Y5 +Yi, 272)
Cos=2(Y, Ys+ Y1 Ya), (2.7.3)
Ca :2(y1 YstY, y4) ' (2.8.1)
Cy :2(y2 Ys— Y1 y4) ' (2.8.2)
Cou==Yi —Y2 +¥Ys+Ya, (28.3)
x,=rC,=C,ly,, (2.9)

hence we denote the differentiation with respect to the independent variable ((Z) by a prime (), since

5= 9
()_di()'

RECURRENT POWER SERIES SOLUTION:
In this section, recurrent power series solution of Egs.(2.3) will be gone in the three following steps.

Rewriting the equations of motion in terms of y’s only as
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Yr=3Q, Y7 Y3 Y4 Ys Yo —3Q, Vi Vo Vi Vs Vo +
6Q, Vi Y5 Ya Ve Vs Yo —6Qu V7 Y3 Vi Vs Vo +
3Q, Y1 Y5 Ys Vs Vs Yo —3Q, V3 Vi Vs Yo —
3Q, Y1 Y5 YaYs Yo +3Q, ¥, V3 Vi Vs Yo —
6Q, Y1 Vs Vs Vs Yo +6Q, Y, Vi Vi Vs Yo — (3.11)
3Q, Y1 Y5 Y5 Ys Yo +3Q, Y, ¥s Vs Vo -
3Q, Y1 Yo Ya ¥s Yo +6Q, Vi Vs Vs Yy Vs Vo —
3Q, Y5 ¥i ¥s Yo +0.25Q, ¥, Y5 Yo +05Y,,

Y5 =3Q, ¥y Vi Vs Yo —3Q, Vi YV, Va3 Vs Vs Vo +
6Q, Vi Y5 Vs ¥s Yo —6Q, Vi V5 Vs Va Vs Yo +
3Q, Y1 Y5 Y5 Ys Yo —3Q, Y5 Vs Va Vs Yo —
3Q, Y1 Y5 ¥s Yo +3Q, Yo Vs Ya Vs Yo —
6Q, V1 Vs Vi ¥s Yo +6Q, Y, V3 Vi Vs Yo — (.12
3Q, Y1 Y5 Vi Vs Yo +3Q, Y, Vs Vi Vs Yo+
3Q, Y7 Vi Ys Yo —6Q, YL Vo Vs Va Vs Yo +
3Q, 1Y Y ¥s ¥s—0.25Q, Y, Y5 Yo —05y,,

Ye=—3Q, V7 Yo ¥a Vs Yo +3Q, ¥y V7 V4 Vs Yo —
6Q, Vs Y3 Vs ¥s Yo +6Q, V1 Y5 Ya Vs Yo —
3Q, Y1 Ys YaYs Yo +3Q, Vo ¥, Vs Vo +
3Q, Y1 Y2 Y3 Vs Yo —3Q, Y5 Vs Va Ys Yo +
6Q, Y1 Y2 Vs Vi Vs Yo —6Q, Y2 Y3 Vi Vs Yo + (3.13)
3Q, Y1 Y2 YsYiYs Yo —3Q, Y2 Vi Vs Yo —
3Q, Yy Vs YaYs Yo+6Q, V1Y, Vs Vi Vs Yo —
3Q, Y5 Y3 Vs Yo +0.25Q,y, ¥s Y, +0.5y,,
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Ye==3Q, ¥ V3 Vs Yo +3Q, ¥ Y, V4 Vs Yo —
6Q, Vi Vs YaYs Yo +6Q, ¥ V3 V4 Vs Yo —
3Q, Y7 Y3 Vs Ys Yo +3Q Y1 Vs Va Vs Vo +
3Q, Y1 Y5 Vs Yo —3Qy Y1 Yo Vs Ya Vs Yo +
6Q, Vi Y3 Ya ¥s Yo =6Q, V1 ¥y Y35 Vi Vs Vo + (.14
3Q, Y7 YaYa ¥s Yo —3Q, V1 Y, Vi Vs Yo +
3Q, Y, Vs Vs Yo—6Q, Y1 Yo Vs Va Vs Yot
3Q, Y5 Y3 Vi ¥s Yo —0.25Q, ¥, Y5 Yo —0.5Yy;,

!

Ys = Yo (3.1.5)

Yo == Ys+ Yo —6Q, Vi Vi Ve Yo +
+12Q, Y1 Y, Ya Ve Ve Yo—6Q, Y5 Vi Vi Yo +
+0.5Q,¥2 Yo —6Q, ¥! V3 Y5 Yo + 3.16)
+12Q, V1 Yo Ys Yo Yo Yo -
—-6Q, Y5 Vi Ye Yo +0.5Q, y¢ Y,

y; =12Q, y12 ye? Yo —24Q, V1 ¥, Y2 ¥4 Y6 +12Q, y§ yf Ye—Q ¥sr (317

Yo =t Yl (3.0.8)
where Q,=0q,/u. (3.2.1)
y, =11y, (3.2.2)
Yy, =1/y:", (3.2.3)
r,=r2 (3.2.4)
Substituting with new variables to reduce the order of Egs.(3.1). So, we let
Vi =ViYi, i =114 Yio =Vi VYo ,1=5,6;
& =Yi Yso , 1 = 1(1)5; Vi =Yiy,1=12,j=3,4;
I3 =Y1o I € = Y6 Y69 » U = Y13 Y59,
W = You Yso; Zii = Vi Vi » | = 1(1)4; Zi = Vi i » 1 =1(1)4;
Zi = Vi Y. i=12,j=24 by =y yi, i =1(1)5;
D2 = Yas Vi, 1 = 1(1)5; 011 = Y13 Y13 ;
d12 = Yos You ; di3 = Vi3 Yo,
f=3211+621p+320-3233—6234—-32;
Xi = fy. , i= 1(1)4, di = dli Y6 , i= 1(1)3,
Xii=Uu bli , i= 1(1)5, Xoj = W b2i , i= 1(1)5,
X3i=U b2i , i= 1(1)5, Ci=uUX, i= 1(1)4,
Coi =W Xi, i=1(1)4; ds=dpes;
d5:—6d1+12d3—6d2;and d6:d5y69.
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Using the previous substitutions into Egs.(3.12), we get the following first order differential set in
eight unknowns

y,=Q,¢,—-Q,c,, —3Q, X, +6Q, X;, —3Q, X,, +0.25Q, e, + 0.5y, (3.3.1)
Y;=Q,C3 —Q,Cpy +3Q, X,; —6Q, X5; +3Q, X,, —0.25Q, e, -0.5y,, (3:3.2)
Y;=-Q, ¢, +Q, ¢y, —3Q, X, +6Q, X3, —3Q, X,, +0.25Q, ¢, +0.5y,,  (333)
Y, =—Q, ¢, +Q,C, +3Q, X3 —6Q, X;; +3Q, X,; —0.25Q, e, - 0.5y, (3.3.4)

Yo =Y, (3.3.5)
Ve =—VYs+Y,—6Q, X +12Q, X,, —6Q, d, +0.5Q, e, +Q, d, +0.5e,, (3.3.6)
Y7 =—2Q,d; —Q, Ye, (3.3.7)
Yo =u %y, (3.3.8)
Let us define the eight Taylor expansions as follows
h =>H¢™ . iz12 .8 (3.4)

n=1
and h'=>nH"™ ¢, (3.5)

n=1

where we have used small letters (h) for the unknown variables and capital letters (H) for the coefficients

in their Taylor series expansion.
Now, let us define the product of two infinite power series. If a and b are two infinite power series such

that

a =

b =
Then, it is easy to show that
c=ab=> C®” s™,
n=1

n ) .
where C(") — Z A(n) B(n-|+l).

i=1
Substituting Egs.(3.4 and 3.5) into Egs.(3.3), and using the rule of the product of two power series, and

equating coefficients of equal powers of ¢ in both sides of each of the resulting equations, then we get
the coefficients of the following recurrence formulae
nYln+1 =Q,C,-Q,C, -3Q, X, +6Q, X,;, -3Q, X,, +0.25Q, E, + 0.5Y,, (3.6.1)

nY,*=Q,C,-Q,C, +3Q, X,, -6Q, X,, +3Q, X,, -0.25Q, E, —0.5Y,, (3.6.2)

nY3”+1 =-Q,C,+Q,C,,-3Q, X, +6Q, X,,-3Q, X,, +0.25Q, E, +0.5Y,, (3.6.3)
nY4n+1 = _Qz C11 + Qz C21 + 3Q2 X13 - 6Q2 X33 + 3Q2 X23 - 0'25Q2 E3 - O'5Y3 ! (3.6.4)
ny,"t =v,, (3.6.5)
nYy ™ =Y, +Y, —6Q, X5 +12Q, X, —6Q, D, +0.5Q, E; +Q, D, +0.5E,, (3.6:6)
nY7n+1 =-2Q,D,-Q,Y,, (3.6.7)
nYBM :H—l/z R3, (3.6.8)
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then we can compute the coefficients (capital letters) to get small letters which are the unknown variables
v's).

4. COMPUTATIONAL DEVELOPMENTS:

In this section, the computational developments of the formulations of section 3 will be
considered.

4.1 Computation Of The Initial Values:

Knowing the position and velocity vectors X, and X, at the instant time (t = 0), we have the
initial values of the y’s as follows

1) F =X+ XX

2) Yy, =1/r,

3) I =Y, (X Xy + %o, Xy + Xo5 Xo3)s

s V,=15uR*J,y;x,-05uR*J,y;,
5) Y, = (X, +X, + X, — 17 +2V ) (1 y?),
6) :—r‘olm,

7) C —X, ¥, 1=1(1)3,

8) P= (X, +X,+X,—F)(uys),

9 Cpi=(Xu!Ys—T, XOi)/m,

10 C,,=C,C,,-C.C,,,

1) C,=C,C,-C,C,,

12 C,=C,C,-C,C,,

13) y4:0.5\/1+C11+ C,+C, .,

19 y,=(C,—C,,)/(4Y,),

15) ¥, =(C,, —C,) /(4Y,),

16) y,=(C,—-C,)/(4y,),

17) Yg =t,.

Computation Of The Step Size
The related equation between the step size At of the time t and the step size A¢ of perturbed true

anomaly is
el 2
A¢ _At ys ,Lt y7 '
Computation Of Accuracy Check
The accuracy of the computed values of the y's at any time could be checked using the relation
2 2 2 2
i+ Y, +Ys+y,=1
RESULTS AND DISCUSSION
As we mentioned in the abstract that we’ll take the numerical example of the Indian satellite RS-1 at

about 300 Km height (Sharma and Mani, 1985) which remained in its orbit for 371 days, its initial
position and velocity components are

X = (1626.742, 6268.094, -1776.018) Km,
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at epoch 20 July 1980, where its one orbital revolution is elapsed 1.588352085 hrs. Since the adopted
physical constant are
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)7(0 =(-5.920522, 0.239214, -5.15883) Km/sec

R =6378.135 Km,

and the Earth’s zonal harmonic coefficient J, equal 1.0826157 x 108,

Using the above values to compute the position and velocity components, i.e., the six elements, and the
accuracy check at any time. The results tabulated in the following table which shows the variation in the
elements (a, e, i, Q, ®) and the check relation even 10 days for 250 day.
prediction up to 250 day and after that day the predication is not good. So, we did our work for the same

interval of days.

Rev.
No.

1

152

303

454

605

756

907

1058

1209

1360

1511

1662

1813

1964

2115

2266

2417

2568

2719

2870

3021

3172

3323

3474

3625

3776

Mean
Solar
Day
0
10.026
20.052
30.046
40.039
50.033
60.026
70.019
80.013
90.006
100.000
109.993
119.986
129.980
139.973
149.966
159.960
169.953
179.947
189.940
199.934
209.927
219.920
229.914
239.907

249.900

a
(Km)

6993.17639
6993.1758
6993.17504
6993.17367
6993.17099
6993.16611
6993.15797
6993.14549
6993.12752
6993.1023
6993.06583
6993.00744
6992.89894
6992.66959
6992.14703
6990.9155
6987.96143
6980.74989
6962.73767
6916.61487
6796.67480
6489.92076
5774.25984
4454.48609
2865.02646

2293.09114

Computed osculating orbital elements.

e

0.04432430

0.04432418

0.04432406

0.04432392

0.04432378

0.04432365

0.04432355

0.04432357

0.04432383

0.04432445

0.04432542

0.04432618

0.04432461

0.04431467

0.04428088

0.04418504

0.04393307

0.04328943

0.0416513

0.03747873

0.02749732

0.02569575

0.10775407

0.31355693

0.64245432

0.77037046

44° 41" 12" A7
44° 41" 12" 46
44° 41" 12" 43
44°41'12" .34
44°41'12" 11
44° 41' 11" .62
44° 41' 10".70
44° 41' 09".04
44° 41' 06".14
44° 41' 01".06
44° 40" 52" .02
44° 40" 35" .57
44° 40’ 05".06
44° 39' 07" .62
44° 37' 18" .40
44° 33' 49" 44
44° 27' 08".19
44° 14" 16" 41
43° 49" 32" .59
43°02' 08".64
41° 31’ 55".06
38°4212".99
33°29' 45" 21
24° 35' 43" 55
21°31'41".20

63° 30" 31".70

510

Q

239° 21"
13".36
239° 21"
13".36
239° 21"
13".34
239° 21"
13".29
239° 21"
13".16
239° 21"
12".89
239° 21"
12".37
239° 21"
117.43
239° 21"
09".78
239° 21"
06".89
239° 21"
01".72
239° 20’
52".30
239° 20’
34".83
239° 20’
01".96
239° 18’
59”.58
239° 17"
00".44
239° 13’
12".00
239° 05
52".69
238° 51"
45".33
238° 24’
22".47
237° 30
34".23
235° 40
34".60
231° 27
54".52
218° 06’
117.52
160° 20"
46".72
149' 29’
20".21

Because of [7] have a perfect

174° 49' 36".79

174° 49' 37".07

174° 49' 37".18

174° 49' 36".67

174° 49' 34".74

174° 49' 30".25

174° 49' 21" .69

174° 49' 07".08

174° 48' 44" .03

174° 48' 09" .55

174 47' 19" .86

174° 46' 09".60

174° 44' 30".20

174° 42' 05".65

174° 38' 22".27

174° 32' 02".48

174°19' 53".93

173° 53" 21".22

172° 46' 49".09

169° 28’ 19".74

15536'01.13

76° 33' 58".60

40°51'13".98

51°22' 49" .49

123 17' 06”.92

204°12' 03".37

1 = 398600.8 Km®*/sec?

Check
Relation

1.00000000

1.00000000

1.00000000

0.99999998

0.99999991

0.99999977

0.99999952

0.99999912

0.99999853

0.99999769

0.99999646

0.99999447

0.99999077

0.99998297

0.99996526

0.99992362

0.99982386

0.99958026

0.99897014

0.99739475

0.99320452

0.98182809

0.95094279

0.87098695

0.70069525

0.60453324
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CONCLUSION

From the table we can conclude that, from 0 up to 210 mean solar days, there are obviously decay in
the two elements (a, €), but the other elements (i, Q, ®) show lightly change.  This expected because the
only force affecting on the motion of artificial satellite is Earth’s gravitational field. This force slightly
affect on the elements (i, Q, ) where these elements are strongly affected by the other forces like drag,
solar radiation pressure, etc.

Also, the table shows that the accuracy check is always nearly to one, i.e., the predictions of the
components of position and velocity (the elements) of the artificial satellite is very good.

After 210 up to 250 mean solar days the accuracy check is not good. Depending on this result the
satellite will go-down after 210 day. This result is nearly to that coming from [7] and [6]

To get more accurate prediction of the motion of the artificial satellite we will be taken into account
the whole other forces affecting on the motion.

REFERENCES

[1]Sharaf MA, Arafah MR, Awad ME. Prediction of satellites in earth's gravitational field with axial
symmetry using Burdet's regularized theory. Earth Moon Planets 1987a; 38: 21-36.

[2] Sharaf MA, Awad ME, Najmuldeen SA. The motion of artificial satellites in the set of Eulerian
redundant parameters1991. Earth Moon Planets 1991; 55: 21-44

[3]Sharaf MA, Awad ME, Najmuldeen SA. Motion of artificial satellites in the set of Eulerian redundant
parameters (l11). Earth Moon Planets 1992; 56: 141.

[4] Sharma RK, Raj MX. Long-term orbit computations with KS uniformly regular canonical elements
with oblatene. Earth Moon Planets 1988; 42: 163-78.

[5]JAwad ME. Encke's special perturbation technique associated with the KS regularized variables. Earth
Moon Planets 1988; 43(1): 7- 20.

[6]Z.M.Hayman, J2-Gravity Perturbed Motion of Artifical Satellite in Terms of Euler Parameters 2012
The Open Astronomy Journal VVol.5 p 12-18

[7] Sharma RK, Mani L. Study of RS-1 orbitl decay with KS differential equations. Indian J Pure Appl
Math 1985; 16(7): 833-42.

511



