
Monte Carlo Methods Appl. 2020; 26(3): 193–203

Research Article

Shady Ahmed Nagy, Mohamed A. El-Beltagy* and Mohamed Wafa

Multilevel Monte Carlo by using the Halton
sequence
https://doi.org/10.1515/mcma-2020-2065
Received October 14, 2018; accepted April 1, 2020

Abstract:Monte Carlo (MC) simulation depends on pseudo-random numbers. The generation of these num-
bers is examined in connection with the Brownian motion. We present the low discrepancy sequence known
as Halton sequence that generates different stochastic samples in an equally distributed form. This will
increase the convergence and accuracy using the generated different samples in the Multilevel Monte Carlo
method (MLMC). We compare algorithms by using a pseudo-random generator and a random generator
depending on a Halton sequence. The computational cost for different stochastic differential equations
increases in a standard MC technique. It will be highly reduced using a Halton sequence, especially in
multiplicative stochastic differential equations.
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1 Introduction
Stochastic differential equations (SDEs) are widely used in application fields such as Engineering [4],
Physics [5] and Finance [17]. SDEs are probabilistic models that are generated from choosing different sam-
ples randomly, so that SDEs depend on different samples. Random samples that represent the noise which is
modeled by using Brownian motion. Each sample of Brownian motion is a different expected path for SDE,
so it works on different samples [1, 2]. The MC method is useful by generating different random samples
that are with a given distribution example: uniform or normal distribution. These samples are used to get
solution statistics for a given function like mean, variance, skewness, and kurtosis. For example, consider
the stochastic process (see [15])

Xt = X0 + ∫ μ(t, Xt) dt + ∫ σ(t, Xt) dWt ,

where Wt is a one-dimensional white noise, μ(t, Xt) is the drift term and σ(t, Xt) is the diffusion term. The
solution of the stochastic integral (second term on the right-hand side of the equation) can be simulated by
representing the noise term as random samples and calculate the solution statistics of it by using the MC
method:

I = ∫
Ω

f(x, ω) dx,
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where Ω is the sample spacedimensionof the integration, andω is the randomness that effects thedifferential
equation. We find the value of the multi-dimension integration by approximating I using the summation

1
N

N
∑
i=1

f(x, ωi)

which approximates E(f(x))where E is the expectation of the function f and N is the number of independent
randomsamples fromanydistribution in thepseudo-randomgenerator on theunit cubeof dimension [0, 1]Ω.
The pseudo-random vector generated can be used to calculate the stochastic integral.

It is well known that MC converges slowly, the convergence rate is proportional to the number of sam-
ples N resulting in a convergence rate 1/√N; i.e. decreasing the convergence rate by a factor 1

2 , the number
of samples should be increased by 4, e.g., 1/√4N → 1/2√N, which is expensive. The MC method depends
on the initial seed with clustering and non-uniform distribution for samples.

Depending on the variance reduction technique called control variate, Giles invented MLMC path simu-
lation, which uses the control variate where the random variable is a Brownian motion sample [6]. A coarser
path is used as control variate for estimating fine paths since its exact expectation is not known. It will be
used recursively as a control variate for estimating the fine paths in a multilevel approach. MLMCwill greatly
decrease the cost if some conditions are satisfied and additive noise-type SDEs. The computational cost will
not be decreased when we use MLMC on the multiplicative type of SDEs. Multi-index Monte Carlo (MIMC) [8]
is the most significant extension of uses one scalar level l or more than one level as computation stochastic
partial differential equations (PDEs)with different levels for time steps and spatial discretization for distance.
MIMC will use levels which will be defined in different directions. It is a combination of sparse grid methods
andM sampling that will be better in high-dimensional stochastic applications. Quasi-Monte Carlo (QMC) is
the equidistant way for generation different stochastic samples. Low discrepancy sequences will be the seed
for generating different random numbers in an equidistant manner that will decrease the convergence rate.
We use the Halton sequence, which is a type of low discrepancy sequences to generate random samples that
are used as a random generator for stochastic samples in SDEs. The paper is organized as follows. In Sec-
tion 2, we start with the QMC technique. In Section 3, the low discrepancy sequences that we use to generate
stochastic samples are detailed. In Section 4, we present the Halton sequence and its definition. Section 5
consists of the MLMC theorem and its explanations. Section 6 consists of some numerical examples for both
different simulations with a pseudo-random generator and a low discrepancy generator on different types of
SDEs. We compare decreasing the computational cost in both methods. In Section 7, we discuss the benefits
of using low discrepancy sequences as random generators in MLMC.

2 QMC technique
In order to increase the convergence rate when using MC, we can increase the uniformity of the generated
random samples that are substituted in the function to evaluate integration by using QMC. QMC works in
the same way as MC, but with more uniformity of the generated samples by choosing an algorithm based
on equally distributed random numbers that are generated by using sequences in order to minimize the
error. Decreasing gaps and reducing clustering from different random samples lead to an increase in the
convergence rate. The convergence rate will be (lnN)Ω/N, where Ω is the dimension of the problem [13].

QMC depends on low discrepancy sequences which are viewed as deterministic or more uniformly MC,
which decreases the error bounds. So all the points are generated in controlled samples. The comparison
is shown in Figure 1 with 1000 points that are generated by using the Halton sequence as an example on
QMC techniques and a pseudo-random generator that is normally distributed, where the pseudo-random
generator is a built-in Matlab function. We can notice that points that are generated in QMC with the Halton
sequence are more uniformly distributed by avoidance of clustering than pseudo-random numbers. This is
due to correlations between the generated points since different points that are not correlated have a small
chance to lie near each other. A simple argument about√N out ofN points lies in the clustering as can be seen
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Figure 1: Comparison of three different random numbers, the red points on the left-hand side are Halton points, the blue points
in the middle are Halton normalized points, and the black points on the right-hand side are Matlab pseudo-random points.

in Figure 1. They are designed for integration rather than optimization or simulation [12].Whenwenormalize
the points generated from the Halton sequence, the clustering between different points will decrease, as it
appears in Figure 1.

Clustering of generated points leads to increased errors in the simulation. Equal distributed numbers are
covering more area under the curve in the calculation of the integral, so it will converge more to the exact
solution.

3 Low discrepancy sequences
A discrepancy is the difference between the proportion of points in a volume box J compared to the full unit
cube IΩ, i.e. the unit cube [0, 1)Ω, Ω ≥ 1 (see [11]). For N points x1, x2, . . . , xN ∈ IΩ define the discrepancy
by

D(J, N) = 
A(J)
N − V(J)

,
where A(J) is the number of points xi in J and V(J) is the volume occupied by the dimension of J.

The worst discrepancy is known as the star discrepancy and the goal is to minimize it:

D∗(N) = max
J
|D(J, N)|

If we use the low discrepancy sequences, the stochastic integral can be approximated through the sequence
points.With the reduction of clustering between the different points, and the substitution of each point in the
sequence in a sample of the stochastic integral sample, various sequences have been constructed to achieve
the low discrepancy; see, for example, [3, 9, 14, 16].

4 Halton sequences
TheHalton sequence is themost basic lowdiscrepancy sequence inmultiple dimensions. It ismainly depend-
ing on the vander Corput sequence indimensionΩ. If it is of dimensionone, then the vander Corput sequence
of base 2, the two-dimensional Halton sequence, is depending on the van der Corput sequence of base 3. The
Halton sequence of dimension Ω is a van der Corput sequence of prime base Ω. The van der Corput sequence
is a one-dimensional low discrepancy sequence. For a given integer n, we want to find its Quasi-Monte Carlo
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random number in prime base p:

n =
I
∑
i=0

cipi = c0p0 + c1p1 + c2p2 + c3p3 + ⋅ ⋅ ⋅ + cIpI , ci < pi .

So the random number xn will equal γp(n), which is computed as ∑Ii=0(ci/(pi+1)). As an example, if n = 22
and the base of the sequence is p = 3, then write

22 = c030 + c131 + c232.
If c2 = 9, c1 = 3 and c0 = 1, then the quasi-random number x22 is

x22 = γ3(22) = c0p1 +
c1
p2 +

c2
p3 =

1
3 +

1
9 +

1
27 =

7
9 ,

so the generated quasi-random number from the sequence is already in the interval [0, 1]. Each number will
be included in this according to the seed, for example:

n = 1 : 1 = 1 ∗ 30 = 1, x1 = γ3(1) = 13 ,
n = 2 : 2 = 2 ∗ 30 = 2, x1 = γ3(2) = 23 ,
n = 3 : 3 = 0 ∗ 30 + 1 ∗ 31 = 3, x3 = γ3(3) = 03 +

1
9 =

1
9 .

The van der Corput sequence in this way with the prime base 3 will be 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 , . . . ; note that all

numbers are included in the interval [0, 1]. The generalization of van der Corput on a multi-dimensional
sequence is a Halton sequence on a unit hyper cube [0, 1]Ω. According to the dimension of the cube, we
determine the base of the van der Corput sequence. If the first dimension of the Halton sequence will be base
2 in van der Corput, the second dimension will be base 3, and so on. The s-th dimension of the unit hyper
cube is a van der Corput sequence of the same s-th prime base.

dim = 1 (base 2) dim = 2 (base 3)

n = 1 1
2

1
3

n = 2 1
4

2
3

n = 3 3
4

1
9

n = 4 1
8

4
9

n = 5 5
8

7
9

n = 6 3
8

2
9

Table 1: Halton sequence points and dimensions.

For the number (17)3 = 122, in order to find the Halton sequence number for it, reverse the digits and
point a radix point in front of the sequence number so it will be (0.211)3. Therefore, H17 = 0.122, but in
base 3, as it is different if we change the base of the van der Corput sequence. Table 1 shows the relation of
the Halton sequence points and the dimension of the sequence based on a prime number. The usage of the
Halton sequence in the Quasi-Monte Carlo integration will improve the convergence rate due to the uniform
distribution of the different random variables.

5 Multi-level Monte Carlo
Theorem 5.1 (MLMC theorem [7]). Let P denote a random variable, and let Pl denote the corresponding level l
numerical approximation. Assume there exist independent estimators Ŷl based on Nl Monte Carlo samples each
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costing Cl, and positive constants α, β, γ, c1, c2, c3 such that α ⩾ min(β, γ) and
|E[P̂l − P]| ≤ c1 ∗ 2−αl ,

E[Ŷl] = {{
{
E[P̂0], l = 0,
E[P̂l − P̂l−1], l > 0,

V[Ŷl] ≤ c2 ∗ N−1l ∗ 2−βl ,
E[Cl] ≤ c3 ∗ 2γl .

Then there exists a positive constant c4 such that for any ε < e−1 there are values L and Nl for which the multi-
level estimator

Ŷ =
L
∑
l=0

Yl

has a mean square error (MSE) with bound

E[(Ŷ − E[P])2] < ε2,
and with computational complexity C with bound

E[C] ≤
{{{
{{{
{

c4ε−2, β > γ,
c4ε−2(log ε)2, β = γ,
c4ε−2−(γ−β)/α , 0 < β < γ.

The total variance will be

V =
L
∑
l=0

N−1l Vl ,

the total cost will be

C =
L
∑
l=0

NlCl

and the mean square error will be

E[(Ŷ − E[P])2] = N−1V[P̂] + (E[P̂] − E[P])2.
Great accuracy occurs with larger N and a small value of the weak error E[P̂] − E[P]. The main idea is that
we need to estimate E[P], but we do not have enough information about it, so we can use the control variate
variance reduction method that can estimate it through another estimator that is highly correlated to it:

N−1
N
∑
n=1
[h(ωn) − λ(g(ωn) − E[g])].

The term P represents the quantity of interest in a given SDE that wewant to estimate. The simulation byMat-
lab is depending on the MC integration for the stochastic integral of a differential equation. It will replace the
conventional MLMC that depend on the randn (Matlab random generator) pseudo-generator to generate the
normal distributed random variables by the new quasi-random generator (Halton sequence). It will increase
the convergence rate and also improve the overall cost better than the conventional MLMC. The variance of
each level equals O(2−βl) and the cost of each level equals O(2γl), where β is the exponent of variance and γ is
the exponent of cost. The optimal number of samples Nl is proportional to 2(−(γ+β)l/2), l = 0, . . . , L. Therefore,
the cost on level l is proportional to 2((γ−β)l/2). The relation between β and γ determines the behavior of the
cost in coarsest levels or finest levels. By plotting the mean, variance and kurtosis, consistency check versus
the different levels. We are only interested in the computational cost that has clear change when applying the
Quasi-Monte Carlo algorithm on the MLMC routine. Successive approximations of quantity of interest P are
P0, P1, P2, . . . , PL with increasing accuracy, but also increasing cost and convergence to P as L →∞. The
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computational cost is approximately proportional to C ∝ ε−2 when β > γ, so the multiplication between Cε2
would be approximately constant; thus we consider decreasing the cost in spite of increasing the number
of levels or accuracy. This is the standard result for an MC approach using i.i.d. samples; to do better would
require a different approach than QMCmethods.When β < γ, the dominant computational cost will be on the
finest levels only on L as CL = O(ε−γ/α). The comparison is between the computational costs that will be taken
in simulationwith different number of stochastic samples for different kinds of equations: Decreasing in com-
putational cost between the conventional StdMC andMLMC in case of using a pseudo-random generator and
decreasing in the computational cost between Std MC using Halton sequence points with MLMC.

6 Examples
Consider the Vasciek interest model as SDE with additive noise [18]:

rt = a(b − rt)drt + σ dwt ,

where r0 = 2, a = 1 and b = 0.04. It gives an explicit characterization of the term structure of interest rates
in an efficient market. This SDE depends on the Black–Scholes model for option pricing. This Vasciek model
depends on an Ornstein–Uhlenbeck process where the interest rate should fluctuate around a mean equilib-
rium ratewhich is between the economic equilibriumof demand and supply. As in Figure 2,we shall consider
that MLMC using the Halton sequence has higher cost thanMLMC using the same points. The case of pseudo-
random generator points Std MC cost is lower than MLMC when using the same sample points. The model
with Halton estimates of key MLMC theorem parameters based on linear regression Table 2 are:
∙ α = 1.075512 (exponent for MLMC weak convergence).
∙ β = 1.151036 (exponent for MLMC variance).
∙ γ = 0.469231 (exponent for MLMC cost).

Accuracy MLMC Cost Std MC Cost Savings

ε = 0.005 40224 83372630 2072.71
ε = 0.01 15024 10380710 690.94
ε = 0.02 11028 1287371 116.75
ε = 0.05 10560 101355 9.59
ε = 0.1 10536 25338.74 2.40

Table 2: Vasciek Interest model values based on Halton points.

TheVasciekSDEvalueswithusingpseudo-randomgenerator estimates of keyMLMC theoremparameters
based on linear regression Table 3 are:
∙ α = 1.020323 (exponent for MLMC weak convergence).
∙ β = 2.028532 (exponent for MLMC variance).
∙ γ = 0.878928 (exponent for MLMC cost).

Accuracy MLMC Cost Std MC Cost Savings

ε = 0.005 15286.50 81703.06 5.34
ε = 0.01 10572 9883.435 0.93
ε = 0.02 10524 2470.859 0.23
ε = 0.05 10512 395.3374 0.03
ε = 0.1 10512 98.83435 0.01

Table 3: Vasciek Interest model values based on pseudo-random points.
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Figure 2: Cost for different MLMC-Halton, Std QMC-Halton, Std MC, and MLMC on the Vasciek interest model.

Figure 3: Cost for different MLMC-Halton, Std QMC-Halton, Std MC, and MLMC on an inhomogeneous SDE.

By using Vasciek–Halton points β > γ, we obtain C = O(ε−2), but with more savings than in the ordinary
Vasciek model regarding that standard MC using Halton sequence points has higher cost than pseudo-
random number generators. Another example of an inhomogeneous SDEs is (see [10])

dXt = (aXt + b) dt + σ dWt ,

where X0 = 2, a = 2, b = 0.4 and σ = 0.2.
The same holds for inhomogeneous-type SDEs but the cost remains the same in both algorithms which

are decreased in the Halton sequence by increasing the accuracy, which appears in Figure 3. Inhomogeneous
based on Halton estimates of key MLMC theorem parameters based on linear regression Table 4 are:
∙ α = 0.386942 (exponent for MLMC weak convergence).
∙ β = −0.226111 (exponent for MLMC variance).
∙ γ = 0.534620 (exponent for MLMC cost).

Inhomogeneous based on pseudo-random generator estimates of key MLMC theorem parameters based
on linear regression estimates of key MLMC theorem parameters based on linear regression Table 5 are:
∙ α = 0.386948 (exponent for MLMC weak convergence).
∙ β = 0.728697 (exponent for MLMC variance).
∙ γ = 0.874801 (exponent for MLMC cost).
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Accuracy MLMC Cost Std MC cost Savings

ε = 0.005 1625101 × 104 5790102 × 108 35629.18
ε = 0.01 3609126 × 103 7237626 × 107 20053.68
ε = 0.02 792932500 9047028 × 106 11409.58
ε = 0.05 110701300 7237615 × 105 6537.97
ε = 0.1 23707050 9047002 × 104 3816.17

Table 4: Inhomogeneous SDE values based on Halton sequence points.

Accuracy MLMC Cost Std MC cost Savings

ε = 0.005 95887941 9311257 × 106 97105.61
ε = 0.01 26657640 1163907 × 106 43661.29
ε = 0.02 6530063 7274413 × 104 11139.88
ε = 0.05 1551561 5819525 × 103 3750.75
ε = 0.1 557262 7274393 × 102 1305.38

Table 5: Inhomogeneous SDE values based on pseudo-random points.

By using an inhomogeneous SDE based onHalton points β < γ, we have CL = O(ε−γ/α) = O(ε−1.38), which
is related to the dominant computational cost in the finest level. Ordinary inhomogeneous SDEswith pseudo-
random numbers, where β > γ, but the computational cost dominant, has in coarsest levels C = O(ε−2). An
example for variable coefficients SDEs is (see [10])

dXt = (a(t)Xt + b(t)) dt + σb(t) dWt ,

where b = 0.4, σ = 0.2, X0 = 1, a(t) = 2
1+t , and b(t) = 0.4(1 + t2)2 is variable coefficient as a function of time.

Decreasing of the cost in the Halton sequence does not grow by increasing the accuracy; it remains the same
when changing the accuracies. Variable coefficients SDEs based on Halton sequence estimates of key MLMC
theorem parameters based on linear regression Table 6 are:
∙ α = 0.542101 (exponent for MLMC weak convergence).
∙ β = −0.071720 (exponent for MLMC variance).
∙ γ = 0.538967 (exponent for MLMC cost).

Accuracy MLMC Cost Std MC cost Savings

ε = 0.005 3594948 1730755 × 104 48144.09
ε = 0.01 794838 2163427 × 104 27218.47
ε = 0.02 140728.5 135208 × 104 9607.72
ε = 0.05 28428 108159800 3804.69
ε = 0.1 16668 13518330 811.03

Table 6: Variable coefficients SDE values based on Halton points.

Variable coefficient SDEs with pseudo-random generator estimates of key MLMC theorem parameters
based on linear regression Table 7 are:
∙ α = 0.542105 (exponent for MLMC weak convergence).
∙ β = 1.332413 (exponent for MLMC variance).
∙ γ = 0.965883 (exponent for MLMC cost).

By using variable coefficient SDEs based on Halton points β < γ, we have CL = O(ε−γ/α) = O(ε−0.99),
which relates to the dominant computational cost in the finest level. Ordinary variable SDEs with pseudo-
randomnumbers,where β > γ, but the computational cost is dominant, has in coarsest levels C = O(ε−2). The
total savings in cost fromStdMC andMLMCby usingHalton sequences are higher than using pseudo-random
numbers regarding the increasing standard cost in using Halton sequences.
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Accuracy MLMC Cost Std MC cost Savings

ε = 0.005 331362 877953700 2649.53
ε = 0.01 134998.5 109743400 812.92
ε = 0.02 62727 13717710 218.69
ε = 0.05 23160 548658.3 23.69
ε = 0.1 16644 68573.91 4.12

Table 7: Variable coefficients SDE values based on pseudo-random points.

Figure 4: Cost for different MLMC-Halton, Std QMC-Halton, Std MC, and MLMC on a variable coefficient SDE.

The Verhulst stochastic equation (see [19, 20])

dXt = rX(t)(1 − X(t)K ) dt + σX(t) dWt

with X0 = 5, σ = 1, r = 0.001 and K = 200, is known as a logistic equation. It is used to model the growth
rate with boundaries related to growing and decaying intervals of an environment. The model is continu-
ous in time where the rate of the reproduction is proportional with the available resources and the existing
population, r defines the growth rate of the population and K is the carrying capacity of the required environ-
ment. Therefore, ( K−X(t)K )population is limitedby the carrying capacity of the environment, and the increasing
of X(t) is limited by K.

The Verhulst stochastic equation is a representative for multiplicative noise-type SDEs. Computational
cost in the MLMC method is more than the standard MC algorithm (see Figure 4), but when we apply Halton
sequenceon theMLMC itwill have lower computational cost thanStdMCalgorithm,which is an enhancement
in the computational cost.

Verhulst based on Halton points estimates of key MLMC theorem parameters based on linear regression
Table 8 are:
∙ α = −3.010288 (exponent for MLMC weak convergence).
∙ β = −5.638101 (exponent for MLMC variance).
∙ γ = 0.631639 (exponent for MLMC cost).

Verhulst based on pseudo-randomgenerator estimates of keyMLMC theoremparameters based on linear
regression Table 9 are:
∙ α = −0.076567 (exponent for MLMC weak convergence).
∙ β = −0.156781 (exponent for MLMC variance).
∙ γ = 0.981791 (exponent for MLMC cost).
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Accuracy MLMC Cost Std MC Cost Savings

ε = 0.005 340346409 240912381 × 109 707844640.80
ε = 0.01 85086609 60228095 × 109 707844584.65
ε = 0.02 21271660 15057023 × 109 707844409.95
ε = 0.05 271222152 5162408 × 109 19033873.67
ε = 0.1 70946178 1290602 × 109 18191283.60

Table 8: Verhulst SDE values based on Halton points.

Figure 5: Cost for different MLMC-Halton, Std QMC-Halton, Std MC, and MLMC on an Verhulst SDE.

Accuracy MLMC Cost Std MC Cost Savings

ε = 0.005 51450846 3272463 0.06
ε = 0.01 12591252 818115.8 0.06
ε = 0.02 3638969 438276.3 0.12
ε = 0.05 499488 32724.63 0.07
ε = 0.1 144475.5 17531.05 0.12

Table 9: Verhulst SDE values based on pseudo-random points.

By using the Verhulst–Halton points β < γ, we have CL = O(ε −γ
α ) = O(ε0.21) which relates with the dom-

inant computational cost in the finest level. Ordinary variable SDEs with pseudo-random numbers, where
β < γ, but the computational cost is dominant, is in coarsest levels C = O(ε12.8). The exponent of the accuracy
value that appears in Figure 5 shows that MLMC cost is higher than for Std MC with different accuracies.

The total savings in cost from Std MC andMLMC by using Halton sequences is higher than using pseudo-
random numbers regarding the increasing standard cost in using Halton sequences.

7 Conclusions
In this paper, We use random numbers generated with different techniques in the MLMC method and apply
them on different SDEs. Depending on low discrepancy sequences, multi-level Quasi-Monte Carlo is more
efficient than the conventional MLMCmethod as it decreases the computational cost. However, the computa-
tional cost by using the Halton sequence as a random generator for stochastic samples is larger than Std MC
by using pseudo-random generators. The computational cost decreases with more savings values with the
large difference between the Std MC and MLMC using the Halton sequence. The Halton sequence as a ran-
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dom generator will enhance and decrease MLMC computational cost in several types of SDEs especially in
multiplicative noise-type SDEs. We obtain high performance by decreasing the computational cost in case of
SDEs with multiplicative noise when applying MLMC using Halton sequences as random generators.
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