Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
El-Sayed, M., A. Huzayyin, A. Mahgoub, and E. Abulzahab, "An Assessment Framework for PV Parallel MPPT Configuration with a New Utilization for UIPS Loads", WSEAS Transactions on Power Systems, vol. 17, pp. 9-20, 2022. AbstractWebsite

The prevalence rate of photovoltaics (PV)-based generation systems has increased by more than 15 folds in the last decade, putting it on the top compared to any other power generation system from the expandability point of view. A portion of this huge expansion serves to energize standalone remote areas. Seeking improvements from different aspects of PV systems has been the focus of many studies. In the track of these improvements, parallel MPPT configuration for PV standalone systems have been introduced in the literature as an alternative to a series configuration to improve the overall efficiency of standalone PV systems.
However, this efficiency improvement of the parallel MPPT configuration over the series one is not valid for
any standalone application, therefore an assessment procedure is required to determine the most efficient MPPT configuration for different standalone applications. Therefore, in this study, an assessment procedure of parallel MPPT is conducted to demonstrate the suitability of utilizing such a configuration compared to series one, based on load daytime energy contributions. This assessment will help PV system designers to determine which MPPT configuration should be selected for applications under study. Furthermore, a new utilization of parallel MPPT configuration is introduced for operating universal input power supply (UIPS) loads to eliminate the inverter stage, thereby increasing the overall system efficiency and reliability. Finally, a systematic procedure to size the complete system is introduced and reinforced by a sizing example.

Elaraby, H. M., A. M. Ibrahim, M. Rawa, E. E. L. - D. A. EL-Zahab, and S. A. H. E. Aleem, "Optimal Allocation of Active and Reactive Power Compensators and Voltage Regulators in Modern Distribution Systems", Modernization of Electric Power Systems: Energy Efficiency and Power Quality: Springer, 2023. Abstract

Improving the performance of distribution networks is a primary target for power system operators. Besides, energy resource limitations and cost-effective distribution of electricity to the consumers encourage engineers, distribution system operators, and researchers to increase the efficiency of electric power distribution systems. Fortunately, many technologies can effectively make such improvements. Active and reactive power compensators such as distributed generators (DGs) and shunt capacitor banks (SCBs) are examples of compensators that can effectively make such improvements in modern radial distribution systems (RDSs), in addition to using recent techniques such as energy storage technologies. Voltage regulators (VRs) can also help these compensators function better in a much more effective techno-economic manner in RDSs, enhance voltage profiles and load stability, and reduce voltage deviations from acceptable values. Unfortunately, rising project investment may result if uneconomic facilities or expensive technologies are used to reduce electric losses significantly. Therefore, economic considerations related to the installed equipment in the networks should be considered. In this regard, the well-known whale optimization algorithm (WOA) is applied in this work to allocate DGs, SCBs, and VRs in a realistic 37-bus distribution system to minimize power losses while conforming with several linear and nonlinear constraints. A cost-benefit analysis of the optimization problem is made in terms of – investment and running costs of the compensators used; saving gained from the power loss reduction, and benefits from decreasing the power to be purchased from the grid; reducing voltage deviations and overloading; and enhancing voltage stability (VS). Three loading scenarios are considered in this work – light, shoulder, and peak levels of load demand. The numerical findings obtained show a noteworthy techno-economic improvement of the quality of power (QoP) performance level of the RDS and approve the efficiency and economic benefits of the proposed solutions compared to other solutions in the literature.