Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Boghdady, T. A., M. M. Ibrahim, E. A. Zahab, and M. Sayed, "Output power control of nuclear reactor using ant lion optimization-based controller", Indonesian Journal of Electrical Engineering and Computer Science, vol. 26, issue 3, pp. 1299-1305, 2022. Abstract

Power level control is a critical issue in nuclear power stations due to its nonlinear dynamics. One of the most commonly used controllers is fractional order proportional–integral–derivative (FOPID). The FOPID is an enhanced and modern controlling system that has two additional added parameters. In this paper, comparison between particle swarm, gray wolf and ant lion optimization techniques is performed to determine the FOPID controller parameters. The nuclear reactor is a pressurized water reactor which is a fifth order nonlinear reactor model and is simulated using MATLAB software based on the point kinetic model. The integral square error (ISE) performance index is used to evaluate the performance of the three optimization techniques. The simulation results show that ant lion optimization for tuning the FOPID controller parameters gives the best performance and integral square error index better than the two other optimization techniques.

Boghdady, T. A., S. G. A. Nasser, and E. E. - D. A. Zahab, "Energy harvesting maximization by integration of distributed generation based on economic benefits", Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, issue 12, pp. 610-625, 2022. AbstractWebsite

The purpose of distributed generation systems (DGS) is to enhance the distribution system (DS) performance to be better known with its benefits in the power sector as installing distributed generation (DG) units into the DS can introduce economic, environmental and technical benefits. Those benefits can be obtained if the DG units' site and size is properly determined. The aim of this paper is studying and reviewing the effect of connecting DG units in the DS on transmission efficiency, reactive power loss and voltage deviation in addition to the economical point of view and considering the interest and inflation rate. Whale optimization algorithm (WOA) is introduced to find the best solution to the distributed generation penetration problem in the DS. The result of WOA is compared with the genetic algorithm (GA), particle swarm optimization (PSO), and grey wolf optimizer (GWO). The proposed solutions methodologies have been tested using MATLAB software on IEEE 33 standard bus system.

Boghdady, T. A., M. Mahmoud, E. A. Zahab, E. Tag-Eldin, and M. Sayed, "Power Level Control of Nuclear Power Plants During Load Following Operation Using Fractional Order Controller Based on a Modified Algorithm", IEEE Access, vol. 11, pp. 134382–134403, 2023. Abstract

Nuclear power can play an important role to achieve a secure clean energy transition. Output power control is considered an important issue with respect to nuclear power plants (NPPs) especially during load following operation mode. In this study, a scheduled fractional order proportional integral derivative (FOPID) controller is designed in order to track the desired reference power for a nuclear reactor in a NPP. Also, a modified manta ray foraging optimization (MMRFO) algorithm is proposed to tune the five parameters of the FOPID controller. The performance of the proposed algorithm is compared with several optimization techniques using 23 benchmark functions. The comparison shows that MMRFO has the best performance. The simulation of the FOPID controller tuned by the proposed MMRFO algorithm is performed using MATLAB/Simulink and its performance is compared with classic PID controller tuned by the MMRFO algorithm. Two different dynamic simulations during load following operation of a nuclear reactor are carried out. The first case study covers the short time operation of a nuclear reactor and the second case covers the long time operation. The simulation results show an acceptable performance with high degree of accuracy for the proposed FOPID controller tuned by the modified algorithm with very low overshoot, very low steady state error and proper control signal. Also, the stability of the proposed controller is also tested using Lyapunov stability criterion which indicates the stable operation for the proposed controller in the two cases. In addition, a sensitivity analysis has been accomplished which indicates the robustness of the controller.