Publications

Export 7 results:
Sort by: [ Author  (Desc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Alham, M. H., M. Elshahed, D. K. Ibrahim, and E. E. D. A. El Zahab, "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management", Renewable Energy, vol. 96: Pergamon, pp. 800 - 811, 2016. Abstract

n/a

Alham, M. H., M. Elshahed, D. K. Ibrahim, and E. E. D. A. El Zahab, "Optimal operation of power system incorporating wind energy with demand side management", Ain Shams Engineering Journal, vol. 8, issue 1: Elsevier, pp. 1 - 7, 2017. Abstract

n/a

Al-Barashi, M. M., D. K. Ibrahim, and E. E. - D. A. El-Zahab, "Evaluating Connecting Al-Mukha New Wind Farm to Yemen Power System", International Journal of Electrical Energy, vol. 3, issue 2, pp. 57 - 67, 2015. Abstract

n/a

Al-Barashi, M. M., D. K. Ibrahim, and E. E. - D. A. El-Zahab, "Evaluating The Energy System in Yemen", Journal of Electric Engineering, JEE, vol. 16, issue 1, pp. Article - 16, 2016. Abstract

n/a

Aboul-Zahab, E. M., D. K. Ibrahim, and S. M. Saleh, "High impedance fault detection in mutually coupled double-ended transmission lines using high frequency disturbances", 12th international Middle-East Power System Conference (MEPCON‘2008), Aswan, Egypt,, IEEE, pp. 412 - 419, 2008. Abstract

n/a

Abo-Hamad, G. M., D. K. Ibrahim, E. A. M. Zahab, and A. F. Zobaa, "Dynamic Quadrilateral Characteristic-Based Distance Relays for Transmission Lines Equipped with TCSC", Energies , vol. 14, issue 21, pp. Article 7074, 2021. Abstract

A two-fold adaptive dynamic quadrilateral relay is developed in this research for protecting Thyristor-Controlled Series Compensator (TCSC)-compensated transmission lines (TLs). By investigating a new tilt angle and modifying the Takagi method to recognize the fault zone identifier, the proposed relay adapts its reactive reach and resistive reach separately and independently. The investigated tilt angle and identified fault zone use the TCSC reactance to compensate its effect on the TL parameters and system homogeneity. Excessive tests are simulated by MATLAB on the non-homogenous network, IEEE-9 bus system and further tests are carried out on IEEE-39 bus system in order to generalize and validate the efficiency of the proposed approach. The designed trip boundaries are able to detect wide range of resistive faults under all TCSC modes of operations. The proposed approach is easy to implement as there no need for data synchronization or a high level of computation and filtration. Moreover, the proposed adaptive dynamic relay can be applied for non-homogeneity systems and short as well as long TLs which are either TCSC-compensated or -uncompensated TLs.

Abo-Hamad, G. M., D. K. Ibrahim, E. A. M. Zahab, and A. F. Zobaa, "Adaptive Mho Distance Protection for Interconnected Transmission Lines Compensated with Thyristor Controlled Series Capacitor", Energies , vol. 14, issue 9, pp. Article 2477, 2021. Abstract

This paper proposes an adaptive dynamic Mho distance relay based on a phase comparator scheme for protecting interconnected transmission networks compensated with a Thyristor Controlled Series Capacitor (TCSC). The proposed relay uses an impedance index factor to initiate the fault detection subroutine. The RMS of the positive sequence current of the faulted loop and the TCSC terminal current are compared for TCSC zone identification. A phase comparator for ground and phase distance elements is proposed, relying on the positive sequence voltage as a polarized memory quantity, while the operating and polarizing quantities are developed using estimated TCSC impedance to mitigate its negative impact. The proposed scheme is easy in implementation and independent on synchronized data transfer, as minimum communication requirements are needed. To evaluate the performance of the proposed scheme, extensive simulation studies were carried out on an IEEE9 bus system compensated with TCSC for different firing angles covering four modes of TCSC operations, different fault types, and fault locations. In addition, an IEEE-39 bus network, as a large interconnected system, is tested for validation purposes. The achieved results designate the precision of the proposed scheme. Moreover, the results indicate its effectiveness for fault resistance tolerance, close-in three phase faults, and stable power swing phenomenon compared with conventional relays.

Tourism