Publications

Export 52 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Samir, A., A. E. A. M. Elhamid, A. Eliwa, E. E. D. A. Zahab, M. B. Zahran, and M. M. Sayed, "Superior supercapacitive performance of molybdenum sulfide/reduced graphene oxide composite", Journal of Alloys and Compounds, vol. 971, issue 15 January 2024, pp. Article no. 172645, 2024. Abstract

Hydrothermal strategy was used to grow molybdenum sulfide (MoS2) micro flower-like structures reinforced reduced graphene oxide (rGO) for supercapacitor (SC) application. Morphological and structural analyses confirmed the well-distribution of MoS2 on rGO sheets. Despite using lithium sulfate (Li2SO4) as a relatively high-voltage window electrolyte, potassium iodide (KI) was incorporated for sturdy iodide/iodine redox interaction. Thus, the fabricated symmetric SCs result achieved superior power density (Pd) of ∼36 kW/kg and exceptionally high energy density (Ed) of 132.9 Wh/kg at 10 and 0.1 A/g, respectively. The maximum estimated specific capacitance (Cs) was 357 F/g for optimum KI ratio. Additionally, SC possesses more than 99 % of retention value after applying 8000 cycles at 10 A/g. These findings implies MoS2/rGO composite and Li2SO4/KI mixed electrolyte configuration as a simple but efficient SC configuration for high energy, power and lifetime.

Shafei, M. A. R., D. K. Ibrahim, E. E. - D. A. El-Zahab, and M. A. A. Younes, "Biogeography-based optimization technique for maximum power tracking of hydrokinetic turbines", Proceedings of the IEEE International Conference on Renewable Energy Research and Applications (ICRERA), USA, IEEE, pp. 789 - 794, 2014. Abstract

n/a

Shafei, M. A. R., D. K. Ibrahim, and E. E. - D. A. El-Zahab, "Transient stability enhancement of Egyptian national grid including nuclear power plant in Dabaa area", IEEE International Conference on Power and Energy (PECon), Kota Kinabalu Sabah, Malaysia, IEEE, pp. 487 - 492, 2012. Abstract

n/a

Shafei, M. A. R., D. K. Ibrahim, A. M. Ali, M. A. A. Younes, and E. E. L. - D. A. EL-Zahab, "Novel approach for hydrokinetic turbine applications", Energy for Sustainable Development, vol. 27, issue August: Elsevier, pp. 120 - 126, 2015. Abstract

n/a

Shazly, J. H., M. A. Mostafa, D. K. Ibrahim, and E. A. E. El Zahab, "Thermal analysis of high-voltage cables with several types of insulation for different configurations in the presence of harmonics", IET Generation, Transmission & Distribution, vol. 11, issue 14: IET Digital Library, pp. 3439 - 3448, 2017. Abstract

n/a

Shehata, T., M. A. S. moteleb, and E. M. A. El-Zahab, "STATCOM controllers based on fuzzy PI approach", Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, issue 3, pp. 1138-1147, 2020. Abstract

The electricity companies enforced some legislation on the electricity consumption contracts because the electricity network cannot bear the increasing demands of consumers. Therefore, a new controlling system is required to improve the frequent variations of the power system operating point (OP). Consequently, the flexible AC transmission systems (FACTS) controllers should be able to integrate with recent OP. Coordination of FACTS controller is more sophisticated due to various OP and uncertainties parametric in cooperation with the non linearity of power system (PS). Static Synchronous Compensator (STATCOM) plays very important role like the stability support of large and small transient-disturbance in PS. Therefore, the aim of this research is presents fuzzy logic (FL) with the PI controller (a novel controller) its ability to improve the performance of the power system along with the capability of switch irregular and rough actual world data. This new controlling system may be suitable for a wide range of applications especially the models which deal with huge and complicated data analysis. This new controller system carries out the adjustments of the voltage on DC capacitor under transient and steady-state conditions.

Y
Younis, R. A., D. K. Ibrahim, E. M.Aboul-Zahab, and A. ’fotouh El'Gharably, "Techno-economic investigation using several metaheuristic algorithms for optimal sizing of stand-alone microgrid incorporating hybrid renewable energy sources and hybrid energy storage system", International Journal on Energy Conversion (I.R.E.CON.), vol. 8, issue 4, pp. 141- 152, 2020. Abstract

Increasing energy demand worldwide has resulted in more penetration of renewable sources for developing non-polluted electric energy despite their prices are not economically competitive to traditional generation systems due to intermittent nature of renewable resources. Energy storage systems are used to counteract the intermittent nature of renewable sources. Therefore, the optimal sizing and design of stand-alone renewable generating systems is a significant concern to get a more cost-effective system. This paper focuses on achieving the optimum design and size of a microgrid to meet the load requirements and reducing the total cost including capital, investment, operational and maintenance costs. For this aim, the sizing problem is formulated to be solved using three well-known metaheuristic algorithms, namely, Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO) and Cuckoo Search Optimization (CSO). The employed microgrid comprises hybrid renewable energy sources of PV/Wind systems integrated with a hybrid energy storage system of Battery and FC/Electrolyzer set for supplying AC loads located in Zafarana, Egypt. On the basis of real meteorological data of the studied location, the produced energies from the renewable sources are estimated using MATLAB developed algorithms. The simulation results showed that the optimized design using CSO can robustly and efficiently yield the optimal design of a microgrid.

Younis, R. A., D. K. Ibrahim, E. M.Aboul-Zahab, and A. ’fotouh El'Gharably, "Power Management Regulation Control Integrated with Demand Side Management for Stand-alone Hybrid Microgrid Considering Battery Degradation", International Journal of Renewable Energy Research, vol. 9, issue 4, pp. 1912-1923, 2019. Abstract

A new Power Management Regulation Control (PMRC) integrated with Demand Side Management (DSM) strategies is proposed to enhance the Energy Management System (EMS) of a stand-alone hybrid microgrid. The microgrid combines Wind and PV systems as Renewable Energy Sources (RES) with a hybrid Energy Storage System (ESS) of Battery and Fuel Cell/Electrolyzer set. Towards achieving Net Zero Energy Supply, such microgrid is adequate in remote and isolated new communities with AC controllable critical and noncritical loads. The proposed PMRC implies two-levels of control based on Multi-Agent System (MAS). The first level keeps the output power of each source in its maximum available output power by applying maximum power point tracking (MPPT) techniques. The second level is based on making proper decisions for achieving the power balancing regulation and coordination between the available and the reserve power of the RES and ESS under different operating modes. Valley Filling, Energy Conservation and Load Shifting are applied as DSM strategies to improve loads sustainability during system contingencies. Considering the battery as the most expensive part in the microgrid, the effectiveness of the proposed strategy is further verified by determining the maximum permissible estimated battery lifetime during the operation in all possible scenarios. Extensive simulation studies for various scenarios of microgrid operation in a year were carried out using Matlab/ Simulink with realistic typical wind speed, solar irradiation data and restricted by the status of available ESS.

Yousef, W. H., D. K. Ibrahim, and E. Abo El-Zahab, "Discrimination of Internal Faults and Inrush Currents For Large Modern Power Transformer", Proceedings of 14th International Middle East Power Systems Conference (MEPCON 2010), Cairo, Egypt, 2010. Abstract

n/a

Z
Zeineldin, H. H., H. M. Sharaf, D. K. Ibrahim, and E. E. A. El-Zahab, Closure to “Optimal Protection Coordination for Meshed Distribution Systems With DG Using Dual Setting Directional Over-Current Relays”, , vol. 7, issue 3: IEEE, pp. 1757 - 1757, 2016. Abstract
n/a
Zeineldin, H. H., H. M. Sharaf, D. K. Ibrahim, and E. E. - D. AbouEl-Zahab, "Optimal Protection Coordination for Meshed Distribution Systems With DG Using Dual Setting Directional Over-Current Relays", IEEE Transactions on Smart Grid, vol. 6, issue 1: IEEE, pp. 115 - 123, 2015. Abstract

n/a