Dynamic patterns of expressed genes in granulosa cells during follicular and luteal stages in Egyptian buffaloes.

Sosa, A. S. A., S. Ibrahim, K. G. M. Mahmoud, Y. R. El-Baghdady, M. F. Nawito, M. S. S. Abdo, and M. M. Ayoub, "Dynamic patterns of expressed genes in granulosa cells during follicular and luteal stages in Egyptian buffaloes.", Tropical animal health and production, vol. 53, issue 6, pp. 532, 2021.


A better understanding of the molecular mechanisms in granulosa cells (GC) is warranted, during different follicular and luteal developmental stages in buffalo cows. We aimed to (I) study the expression of selected genes in GC during follicular and luteal phases, (II) evaluate correlations between GC gene expression and steroid concentrations {17-beta estradiol (E2) and progesterone (P4)} in follicular fluid (FF), and (III) study effect of ovarian status on follicular population as well as follicular size frequency. Ovaries were collected in pairs from buffaloes (n = 178). Ovaries bearing corpus luteum (CL) were subdivided into hemorrhagic, developing, mature, and albicans. Follicles from luteal groups were classified only into small (< 4 mm) and large (9-20 mm), while follicles from follicular groups were classified into three subgroups: small (< 4 mm), medium (5-8 mm), and large (9-20 mm). The FF and GC were collected for steroid concentrations measurement and gene expression, respectively. In the follicular phase, luteinizing hormone/choriogonadotropin receptor (LHCGR) and cytochrome P450 aromatase (CYP19) in small follicles decreased compared to medium ones. Large follicle showed an increase in LHCGR and CYP19 compared to medium ones. Follicle-stimulating hormone receptor (FSHR) decreased in large compared to medium size follicles. Proliferating cell nuclear antigen (PCNA) increased in small and large follicles. Meanwhile, anti-Mullerian hormone (AMH) and phospholipase A2 group III (PLA2G3) decreased in small and large follicles. The different stages of luteal phase had a profound impact on GC gene expression. There were strong (positive and/or negative) correlations between gene expression and steroid hormones. The different scenarios between expressed genes in GC and steroid concentrations are required for the proper growth and development of follicles and CL.