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Abstract. Solar-Limb Effect is an observational phenomena connected to the solar gravitational
red-shift. It shows a variation of the magnitude of the gravitational red-shift from the center
to the limb of the solar disc. In the present work an attempt, for interpreting this phenomena
using a general relativistic red-shift formula, is given . This formula takes into account the effect
of the the Sun’s gravitational field, the effect of the solar rotation, the effect of inclination of
the line of sight and the motion of the observer. In this study the gravitational field of the Sun
is assumed to be given by Lense-Thirring field instead of the Schwarzschild one. The Earth is
assumed to move along an elliptic orbit. Comparison with a previous relativistic study and with
observation is given.
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1. Introduction
The solar limb effect is an observational phenomena indicating that the value of the

gravitational red-shift varies from point to point along the solar disc (cf. Adam (1976,
1979), Peter (1999)). While the theoretical study using orthodox general relativity (GR)
gives constant value for gravitational red-shift, observations show that this value increases
as we move from the center to the limb of the Sun’s disc. Many authors have attempted
to find satisfactory interpretation for this effect (cf. Mikhail et al.(2002) and references
listed therein).

In a previous attempt (Mikhail et al.(2002)) two of us , in collaboration with Mikhail
have tried to find an interpretation using a more general formula for the gravitational
red-shift in the context of GR. In that study the assumptions have been:
1) The gravitational field of the Sun is given by the Schwarzschild exterior solution.
2) The observer, on the Earth’s surface , moves in a circular orbit about the Sun.

In the present work we are going to use the same general formula for the gravitational
red-shift, used in the above mentioned study. The main differences between the present
study and above mentioned one are:
(1) The Sun’s gravitational field is given by Lense-Thiring solution of GR in free space.
(2) The observer, on the Earth’s surface, is assumed to move in an elliptic trajectory
about the Sun.
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2. A General Formula for Red-Shift Variation
Kermack, McCrea and Whittaker (1933), established and proved two theorems on null-

geodesics. As a direct result of application of these theorems, they found the following
formula:

λ
0
1 =

[ρµ ηµ]C1

[ω̄µ ηµ]C0

λ1 , (2.1)

where we assume that we have two identical atoms at the points C1 and C2 on the solar
equator where there are two observers A1, A2 respectively, λ1,λ

0
1 are the wavelengths of a

certain spectral line, as measured by an observer A1 at C1 and B at the C0 on the Earth’s
surface respectively , ρµ gives the components of the tangent to geodesic of the observer
A1 at C1 and ηµ gives the component of the tangent to the null-geodesic connecting A1

and B and $µ gives the components of the tangent to the trajectory of the observer B.
For the second atom at C2 we can write a formula similar to (2.1) as:

λ
0
2 =

[ρµ ηµ]C2

[ω̄µ ηµ]C0

λ2 . (2.2)

Now, we can write,
λ = λ1 = λ2

as the two atoms are situated on the same great circle (the solar equator). The quantities
between the square brackets in (2.1), (2.2) are evaluated at the points indicated outside
the the brackets, respectively.

As the observer B, on the Earth’s surface, measures the wavelengths coming from the
two atoms at C1, C2, he would expect a difference in the gravitational red-shift given by:

∆ Z =
λ
0
2 − λ

0
1

λ
. (2.3)

Using (2.1), (2.2), we can write (2.3) in the form

∆ Z =
[ρµ ζµ]C2

[ω̄µ ζµ]C0

− [ρµ ηµ]C1

[ω̄µ ηµ]C0

. (2.4)

This formula gives variation of the red-shift of spectral lines emitted by two identical
atoms situated at two different points, on the equator of the Sun.
In this study we assume that these two atoms are situated in two symmetric positions
relative to the the line connecting the observer at B and the center of the Sun.

3. Red-shift Variation in Lense-Thirring Field
In this section, we are going to calculate the quantities necessary to evaluate the

variation of the red-shift given by (2.4). For this reason we assume that the exterior
gravitational field of the Sun, considered as a slowly rotating object, is given by the
Lense-Thirring metric, (cf. Adler et al (1975))

dS2 =
(
1− 2m

%

)
dt2−

(
1− 2m

%

)−1

d%2− %2(dθ2 + sin2 θ dφ2)− 4am

%
sin2 θ dt dφ , (3.1)

where m is the geometric mass of the Sun and (ma) is its intrinsic angular momentum.
Now, we are going to use (3.1) to calculate :
1) The tangent of the geodesic, ρµ, representing the trajectory of the two similar atoms,
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assumed to be circular motion(the motion is along the solar equator)
2) The tangent of the geodesic , $µ , representing the trajectory of the observer B at
the Earth’s surface (elliptical motion).
3) The component of the null vectors , ηµ , ζµ , tangent to the null-geodesics Γ1 , Γ2 ,
connecting C1 and C0 ; C2 and C0 , respectively. Then substituting the calculated values
into (2.4) we obtain,

∆ Z =

√√√√√
γ2
⊕

N2 +
γ2
⊕

r2 β2 − V 2⊕r2 − 4m(V 2
⊕a)

γ2
⊕r

(
V −1
⊕ + β

)

(γ¯ − V 2¯R2) + 4amγ¯
R3 β

×

[ 1 + 2am
R3 (β)

1 + 2am
r3 β − 2maV⊕

rγ⊕
−

√
1− γ⊕

(
1

N2 + 1
r2 β2

)
+ 4am

r3 β

−

2am
R3 β +

(
1− V¯β

)

(
1 + 2am

r3 β
)(

1− V⊕β
)

+

√(
1− γ⊕

r2 β2 + 4am
r3 (β)

)2

− γ⊕
N2

(
1− γ⊕

r2 β2 + 4am
r3 β

)
]

(3.2)

where γ¯ = 1 − (2m/r), γ⊕ = 1 − (2m/R),where (R) and (r) are the radius of the Sun
and the mean distance from the Earth to the Sun respectively, V⊕ & V¯ are the orbital
angular velocities of the Earth and the atoms on the equator of the Sun, respectively and
β = B

N where N & B are constants .

It is well known that the angle between any two null geodesics is a right angle. So, let
us consider the angle (ε) between the projections of the two null geodesics (a measurable
quantity) as defined by Mikhail et al.(2002) as

cos(ε) = aij υi ωj . (3.3)

where υi and ωj are the transport null vectors along the projection of the first and second
null geodesics, respectively. It is worth mentioning that the angle ε is a small angle. So,
it is more convenient to replace it by the angle ψ, between the projection of the radial
null-geodesic and the radius of the Sun passing through the atom. The relation between
the two angles is given by (sin ε = R

r sin ψ), where (R) and (r) are the radius of the
Sun and the mean distance from the Earth to the Sun, respectively. If we neglect terms
containing quantities of the orders (a/r)2 or (a/R)2 and higher, where a is the angular
momentum per unit mass, we get
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∆ Z =

√√√√√
(γ⊕ − V 2⊕r2)− 4amV⊕

r

(
1 + V⊕R√

γ⊕
sin ψ

)

(γ¯ − V 2¯R2) + 4amγ¯
R2√γ⊕

sin ψ
×

[ 1 + 2am
R2√γ⊕

sin ψ

1 + 2amR
r3√γ⊕

sin ψ − 2amV⊕
rγ⊕

−
√

4amR
r3√γ⊕

sinψ
−

1 + 2am
R2√γ⊕

sin ψ − 2amV¯
rγ⊕

− RV¯√
γ⊕

sinψ

1− 2amV⊕
rγ⊕

− 2amV⊕R2

r3γ⊕
sin2 ψ − sin ψ

(
RV⊕√

γ⊕
− 2amR

r3√γ⊕

)
−

√
4amR sin ψ

r3√γ⊕

(
1− R2

r2 sin2 ψ
)

]
.

(3.4)

Now equation (3.4) represents the difference in the red-shift due to the theoretical treat-
ment using Lense - Thirring gravitational field.

4. Results and Discussion
Now we are going to evaluate the variation in the red-shift as given by (3.4), in order

to compare it with the well known observational value. We are going to use the following
data for the Sun and the Earth(cf. Arthur (2000)). These data are summarized in the
following table in both (M.K.S) units and (relativistic units).

Table (1): Dynamical Quantities in M.K.S Units and Relativistic Units

Dynamical Quantity in M.K.S Units in Relativistic Units

r Mean distance form Earth to Sun 1.496× 1011 m 499.0159779 sec
R Radius of the Sun 6.9599× 108 m 2.321591781 sec
a Sun’s angular momentum per unit mass 273.28 m 9.1234× 10−7sec
m Geometric mass of the Sun 1477 m 4.9268× 10−6sec
V¯ The angular velocity of the Sun - 2.865× 10−6rad.sec−1

V⊕ Orbital angular velocity of the Earth - 1.991× 10−7rad.sec−1

For the Earth γ⊕ = 1, and for the Sun γ¯ = 0.99999. By substituting the values of the
quantities, tabulated in Table (1), in equation (3.4), we get

∆ Z(ψ) = 6.1892× 10−6 ×
[ sin ψ

1− 4.6228× 10−7 sinψ

]
. (4.1)

It is clear from this relation that the difference in red-shift on Solar disc varies as sin the
angle ψ, which means that there is a variation in red-shift from center-to-limb. But this
value contains the variation caused by Doppler shift due to the rotation of the Sun. So
to eliminate this effect (Doppler shift) we consider two atoms on the equator of the Sun
situated at two similar positions ψ and − ψ then we take the average value.
The ”Center-to-Limb” variation in red-shift (Λ) is given by the following equation,

Λ =
(
∆ Z

)
ψ=90

−
(
∆ Z

)
ψ=0

. (4.2)

Now by using the numerical values for ∆ Z, given by equation (4.1) then equation (4.2),
will give,

Λ = 2.861× 10−12 sin2 ψ . (4.3)
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To compare this value with those obtained from the previous study (Mikhail et al(2002))
and from observation, let us calculate the maximum value of (4.3) (for ψ = 90)in km/sec
units, we found that

Λtheo = 7.58× 10−7 km/sec. (4.4)
Although this value is greater than that obtained in the previous study (Λ = 4.8 ×
10−7 km/sec), both are still too small compared with the observed value (Λobs =
o.3 km/sec). The ratio between the theoretical and observational values of Λ is given by,

Λtheo

Λobs
= 2.5× 10−6. (4.5)

So, we still have the same conclusion as in the previous work. The ratio given by (4.5)
indicate that there is some parameter missing in the theoretical treatment. The order
of magnitude of this ratio is the same as that of the square value of the fine structure
constant (α = 1

137 ). This gives rise to the idea that the spin -torsion interaction is the
missing parameter, since the coupling constant of this interaction is the fine structure
constant. This interaction is tested by experiment (Wanas et al.(2000))and by using ob-
servations (Wanas et al.(2002), Sousa and Maluf (2004)). A theoretical treatment using
the parameterized path equation(Wanas (1998), (2000)), in place of the nullgeodesic one,
may solve this problem.
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