Ability of Ellagic Acid to Alleviate Osmotic Stress on Chickpea seedlings

El-Soud, Walid Abu, Momtaz Mohamed Hegab, Hamada AbdElgawad, Gaurav Zinta, and Han Asard. "Ability of Ellagic Acid to Alleviate Osmotic Stress on Chickpea seedlings." Plant Physiology and Biochemistry (2013): -.


Abstract Seed germination and growth of seedlings are critical phases of plant life that are adversely affected by various environmental cues. Water availability is one of the main factors that limit the productivity of many crops. This study was conducted to assess the changes in the sensitivity of chickpea seedlings to osmotic stress by prior treatment of chickpea seeds with a low concentration (50 ppm) of ellagic acid. Ellagic acid was isolated and purified from Padina boryana Thivy by chromatographic techniques. After ellagic acid treatment, seeds were germinated for 10 days under different osmotic potentials (0, -0.2, -0.4, -0.6 and -0.8 MPa) of polyethylene glycol (PEG) solutions. Ellagic acid treatment accelerated the germination and seedling growth of chickpea under osmotic stress conditions. Consistent with the accelerated growth, ellagic acid treated seedlings also showed a significant increase in the total antioxidant capacity (FRAP) as well as an increase in the compatible solutes (proline and glycine betaine) content. Additionally, treated seedlings revealed lower lipid peroxidation levels (MDA), electrolyte leakage (EL) and H2O2. Flavonoid and reduced glutathione (GSH) content, and the activity of antioxidant enzymes [catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), glutathione reductase (GR)] and enzymes of the shikimic acid pathway [phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS)] all showed a remarkable increase with ellagic acid pretreatment compared to untreated seedlings especially under mild osmotic stress values (-0.2 and -0.4 MPa). These results suggested that treatment with ellagic acid could confer an increased tolerance of chickpea seedlings to osmotic stress, through reducing levels of \{H2O2\} and increasing antioxidant capacity.



Related External Link