Point Groups

Point Group = the set of symmetry operations for a molecule

Group Theory = mathematical treatment of the properties of the group which can be used to find properties of the molecule

Assigning the Point Group of a Molecule

1. Determine if the molecule is of high or low symmetry by inspection

A. Low Symmetry Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Symmetry</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>No symmetry other than the identity operation</td>
<td>CHFClBr</td>
</tr>
<tr>
<td>C_s</td>
<td>Only one mirror plane</td>
<td>H$_2$C≡CClBr</td>
</tr>
<tr>
<td>C_i</td>
<td>Only an inversion center; few molecular examples</td>
<td>HClBrC—CHClBr (staggered conformation)</td>
</tr>
</tbody>
</table>
B. High Symmetry Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d</td>
<td>Most (but not all!) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.</td>
<td></td>
</tr>
<tr>
<td>O_h</td>
<td>These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry elements are four C_3 axes, three C_4 axes, and an inversion center.</td>
<td></td>
</tr>
<tr>
<td>$C_{\infty v}$</td>
<td>These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.</td>
<td></td>
</tr>
<tr>
<td>$D_{\infty h}$</td>
<td>These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes and a perpendicular reflection plane.</td>
<td></td>
</tr>
<tr>
<td>I_h</td>
<td>Icosahedral structures are best recognized by their six C_5 axes (as well as many other symmetry operations—120 total!).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$B_{12}H_{12}^{2-}$, with BH at each vertex of an icosahedron</td>
<td></td>
</tr>
</tbody>
</table>
2. If not, find the principle axis
3. If there are C_2 axes perpendicular to C_n the molecule is in D If not, the molecule will be in C or S
4. If σ_h perpendicular to C_n then D_{nh} or C_{nh} If not, go to the next step
5. If σ contains C_n then C_{nv} or D_{nd} If not, D_n or C_n or S_{2n}
6. If S_{2n} along C_n then S_{2n}
7. If not C_n
The determination of point groups of molecules

only one rotational axis = C_2

two σ_v, but no σ_h mirror planes means point group is C_{2v}

The point group of the water molecule is C_{2v}
Naming point groups:

The name of the point group has information about the symmetry elements present. The letter is the rotational group and the subscript number after the letter indicates the order of the principal rotational axis (e.g. 3-fold or 4 fold etc.):

- A ‘C’ indicates only one rotational axis.

 - C_3: 3-fold rotational axis
 - C_{3v}: has σ_v but no σ_h mirror plane

- A ‘D’ indicates an n-fold principal rotation axis plus n 2-fold axes at right angles to it.

 - D_{4d}: 4-fold principal axis, $d = \text{no} \sigma_h$ mirror plane
 - D_{4h}: 'h' indicates a σ_h mirror plane
A subscript ‘h’ means that there is a σ_h mirror plane at right angles to the n-fold principal axis:

![Diagram of D_{4h} and D_{3d} point groups](image)

A subscript ‘d’ (or v for C groups) means there is no σ_h mirror plane, but only $n \sigma_v$ mirror planes containing the principal C_n axis.
Naming platonic solids:

Platonic solids: Five special polyhedra: Tetrahedron, Cube, Octahedron, Dodecahedron, and Icosahedron

Their faces are all exactly the same. The same number of faces meet at each vertex.

\[T = \text{tetrahedral} = 4 \text{ three-fold axes} \]
\[O = \text{octahedral} = 3 \text{ four-fold axes} \]
\[I = \text{icosahedral} = 6 \text{ five-fold axes} \]

\[C_{60} \] ‘bucky-ball’ or ‘Fullerene’
Flow chart for determining point groups.

1. **is the molecule linear?**
 - yes ➔ *D*_∞h
 - no ➔ *C*_∞v

2. **is it T_d, O_h or I_h?**
 - yes ➔ *T*_d, *O*_h or *I*_h
 - no ➔

3. **is there a principal *C*_n axis?**
 - yes ➔
 - no ➔

4. **are there *n* *C*_2 axes perpendicular to the *C*_n axis?**
 - yes ➔
 - no ➔

5. **is there a *σ*_h plane perpendicular to the *C*_n axis?**
 - yes ➔
 - no ➔

6. **is there a *σ*_v plane containing the *C*_n axis?**
 - yes ➔
 - no ➔

7. **are there *σ*_v planes containing the *C*_n axis?**
 - yes ➔
 - no ➔
The point group of the carbon dioxide molecule

We start at the top of the flow-chart, and can see that the CO$_2$ molecule is linear, and has a center of inversion (i) so it is $D_{\infty h}$. Note the C_∞ principal rotation axis.
Other linear molecules:

The top row of linear molecules all have a center of inversion (i) and so are $D_{\infty h}$.

The bottom row have no i and so are $C_{\infty v}$.

All have a C_{∞} axis.
The Platonic solids:
tetrahedron octahedron icosahedron

Diagram showing the Platonic solids with the corresponding symmetry groups:
- Tetrahedron (T_d)
- Octahedron (O_h)
- Icosahedron (I_h)

Decision tree:
1. Is the molecule linear? Yes → Proceed to next question.
 No → Proceed to the next step.
2. Is there a center of inversion? Yes → $D_{\infty h}$.
 No → $C_{\infty v}$.
3. Is it T_d, O_h, or I_h? Yes → T_d, O_h, or I_h.
 No → Start over.
The C_s point group:

C_s

Chloro-difluoro-iodo-methane

Is there a principal C_n axis?
- Yes
 - Are there n C_2 axes perpendicular to the C_n axis?
 - Yes
 - Yes
 - No
 - No
 - No
 - Yes

Is there a mirror plane?
- Yes
 - C_s
 - No
 - No

Is there a center of inversion?
- Yes
 - C_i
 - No

Is there a σ_h plane perpendicular to the C_n axis?
- Yes
 - D_{nh}
 - No

Most land animals have bilateral symmetry, and belong to the C_s point group:
The C_1 point group:

Molecules that have no symmetry elements at all except the trivial one where they are rotated through 360° and remain unchanged, belong to the C_1 point group. In other words, they have an axis of $360^\circ/360^\circ = 1$-fold, so have a C_1 axis. Examples are:

Bromo-chloro-fluoro-iodo-methane

chloro-iodo-amine
The division into C_n and D_n point groups:

After we have decided that there is a principal rotation axis, we come to the red box. If there are $n \ C_2$ axes at right angles to the principal axis, we have a D_n point group. If not, it is a C_n point group.
The C_n point groups:

The C_n point groups all have only a single rotational axis, which can theoretically be very high e.g. C_5 in the complex $[\text{IF}_6\text{O}]^-$ below. They are further divided into C_n, C_{nv}, and C_{nh} point groups. The C_n point groups have no other elements, the C_{nv} point groups also have a σ_v mirror plane containing the C_n rotational axis, while the C_{nh} point groups also have a σ_h mirror plane at right angles to the principal rotational axis.
The point group of the water molecule

We start at the top of the flow-chart, and can see that the water molecule is not linear, and is not tetrahedral (T_d), octahedral (O_h), or icosahedral, (I_h) so we proceed down the chart.
Yes, there is a principal C_n axis, so we proceed down the chart, but in answer to the next question, there are no further C_2 axes at right angles to the principal axis, which is the only axis, so we proceed down the chart
The point group of the water molecule is C_{2v}.

There is no σ_h plane at right angles to the C_2 axis, but there are two σ_v planes containing the C_2 axis.

The point group of the water molecule is C_{2v}.
Other C_{nv} molecules:

- Water (C_{2v})
 - C_2 axis lies in mirror planes
- Ammonia (C_{3v})
 - C_3 axis lies in mirror planes
- Square pyramidal complex (C_{4v})
 - C_4 axis lies in four mirror planes
- Vanadyl tetrafluoride (VOF_4)
Some more C_{2v} molecules:

- Phosphorus iodo-tetrafluoride (PF_4I)
- Sulfur tetrafluoride (SF_4)
- Carbonyl chloride ($COCl_2$)
The C_n point groups:

These have a C_n axis as their only symmetry element. Important examples are (hydrogens omitted for clarity):

- **Cyanobinaphthalene**
 - Viewed down C_3 axis
 - C_3

- **Cobalt(III) tris-glycinate**
 - Viewed down C_3 axis
 - C_3

- **Triphenylphosphine**
 - Viewed from the side
 - C_3

- **Cobalt(III) tris-glycinate**
 - Viewed from the side
 - C_3
The D (Dihedral) Groups.

If there are in addition to the C_n axis, one or more C_2 axes of symmetry, we have a molecule belonging to the D point groups.

If the only extra symmetry elements besides the C_n axis, are one or more C_2 axes perpendicular to the C_n axis, then the molecule belongs to the D_n point group. There must then be n C_2 axes in the molecule.

Adding a vertical mirror plane to a D_n group that then contains the principal axis gives a D_{nd} group.

If there is in addition a mirror plane that bisects the principal axis, we have the D_{nh} group.
The D_{nh} point groups:

- Are there n C_2 axes perpendicular to the C_n axis?
 - Yes $\rightarrow D_{nh}$
 - No

- Are there σ_v planes containing the C_n axis?
 - Yes $\rightarrow D_{nd}$
 - No $\rightarrow D_n$

C_4 principal axis

Four C_2 axes at right angles to C_4 axis

Mirror plane at right angles to C_4 axis
Examples of molecules belonging to D_{nh} point groups:
Benzene, an example of the D_{6h} point group:
The D_n point groups:

- **are there n C_2 axes perpendicular to the C_n axis?**
 - yes
 - is there a σ_h plane perpendicular to the C_n axis?
 - yes $\rightarrow D_{nh}$
 - no $\rightarrow D_{nm}$
 - no $\rightarrow D_n$

- **are there σ_v planes containing the C_n axis?**
 - yes $\rightarrow D_{nd}$
 - no $\rightarrow D_n$

These have a principal n-fold axis, and n 2-fold axes at right angles to it, but **no mirror planes**.

[Cu(en)$_2$]$^{2+}$ complex with H-atoms omitted for clarity. (en = ethylene diamine)
Some further views of the symmetry elements of $[\text{Cu(en)}_2]^{2+}$, point group D_2:

$[\text{Cu(en)}_2]^{2+}$ complex with H-atoms omitted for clarity. (en = ethylene diamine)
Some views of the symmetry elements of $[\text{Co(en)}_3]^{3+}$, point group D_3.

- View down the C_3 axis of $[\text{Co(en)}_3]^{3+}$ showing the three C_2 axes.
- View down one of the three C_2 axes of $[\text{Co(en)}_3]^{3+}$ at right angles to C_3.

Diagram showing the C_2 and C_3 axes with the D_3 point group symbol.
Other examples of the D_3 point group

$[\text{Co(oxalate)}_3]^{3-}$

$[\text{Co(bipyridyl)}_3]^{3+}$
Molecules belonging to the D_{nd} point groups

These have mirror planes parallel to the principal axis, but not at right angles to it.

C_3 axis

σ_v planes contain the principal axis

D_3d

C_5 axis

Staggered form of ethane

Staggered form of ferrocene

D_5d
As predicted by VSEPR, the $[\text{ZrF}_8]^{4-}$ anion has a square anti-prismatic structure. At left is seen the C_4 principal axis. It has four C_2 axes at right angles to it, so it has D_4 symmetry. One C_2 axis is shown side-on (center). There are four σ_v mirror planes (right), but no mirror plane at right angles to C_4, so the point group does not rate an h, and is D_{4d}.
[K(18-crown-6)]^+, an example of a \(D_{3d} \) point group:

The complex cation \([K(18\text{-crown-6})]^+\) above is an important structure that has \(D_{3d} \) symmetry. It has a \(C_3 \) principal axis with 3 \(C_2 \) axes at right angles to it, as well as three \(\sigma_v \) mirror planes that contain the \(C_3 \) axis, but no \(\sigma_h \) mirror plane (because it’s not flat, as seen at center), so is \(D_{3d} \).
Some Point groups