Zaky, D. A., W. Wadie, W. M. Eldehna, A. M. El Kerdawy, D. M. Abdallah, and H. S. El Abhar, "Modulation of endoplasmic reticulum stress response in gut-origin encephalopathy: Impact of vascular endothelial growth factor receptor-2 manipulation.", Life sciences, vol. 252, pp. 117654, 2020. Abstract

BACKGROUND: Septic encephalopathy, the most frequent complication of sepsis, is orchestrated by a complex interplay of signals that leads to high mortality rates among intensive care unit patients. However, the role of the vascular endothelial growth factor receptor-2 (VEGFR2) in endoplasmic reticulum stress response (ERSR), during septic encephalopathy, is still elusive.

AIM: This study was aimed to examine the effect of an in-house designed/synthesized VEGFR2 antagonist, named WAG4S, on septic encephalopathy using cecal ligation and perforation (CLP).

MAIN METHODS: Rats were intraperitoneally injected with WAG-4S (1 mg/kg/d) for 7 days post-CLP.

KEY FINDINGS: In septic animals, VEGFR2 antagonism declined the expression of cortical p-VEGFR2 and p-mammalian target of rapamycin complex-1 (p-mTORC1). It also worsened the behavioral and histopathological alterations beyond CLP. However, and contrary to CLP, WAG-4S decreased the p-protein kinase R-like ER kinase (p-PERK) and eukaryotic initiation factor-2α (p-eIF2α) expression. Moreover, VEGFR2 blockade upregulated the mRNA expression of activating transcription factor-4 (ATF4), binding immunoglobulin protein/glucose-regulated protein-78 (Bip/GRP78), growth arrest and DNA damage-34 (GADD34) and spliced X-box binding protein-1 (XBP1s) above CLP. Similarly, it boosted inositol requiring enzyme-1α (IRE1α) activation and redox imbalance. In the same context, WAG-4S augmented the protein levels of CLP-induced ERSR apoptotic markers, namely C/EBP homologous protein (CHOP/GADD153), c-jun N-terminal kinase (JNK) and caspase-3.

SIGNIFICANCE: In conclusion, the PERK/eIF2α axis inhibition, during septic encephalopathy, is VEGFR2-independent, whereas the activated IRE1α/XBP1s/CHOP/JNK/caspase-3 cue promotes the ERSR execution module through VEGFR2 inhibition. This has turned VEGFR2 into a potential therapeutic target for ameliorating such an ailment.

Wadie, W., A. H. Mohamed, M. A. Masoud, H. A. Rizk, and H. M. Sayed, "Protective impact of lycopene on ethinylestradiol-induced cholestasis in rats.", Naunyn-Schmiedeberg's archives of pharmacology, vol. 394, issue 3, pp. 447-455, 2021. Abstract

Protection against cholestasis and its consequences are considered an essential issue to improve the quality of a patient's life and reduce the number of death every year from liver diseases. Lycopene, a natural carotenoid, has antioxidant scavenger capacity and inhibits inflammation in many experimental models. The present study aimed to elucidate the potential protective effects of lycopene, in comparison to silymarin, in a rat model of cholestatic liver. Animals were daily injected with 17α-ethinylestradiol (EE; 5 mg/kg) for 18 successive days. Silymarin (100 mg/kg) and lycopene (10 mg/kg) were orally administered once per day through the experimental period. Lycopene significantly decreased the EE-induced rise in the serum levels of total bile acid and total bilirubin as well as the activities of alanine aminotransaminase, aspartate aminotransaminase, alkaline phosphatase, and gamma-glutamyl transaminase. Moreover, lycopene reduced the hepatic levels of thiobarbituric acid reactive substances and tumor necrosis factor-α as well as the hepatic activity of myeloperoxidase that were markedly elevated by EE. Lycopene increased the hepatic levels of total protein and albumin and reduced glutathione. In addition, lycopene improved the hepatic histopathological changes induced by EE. These protective effects of lycopene were comparable to that of silymarin. In conclusion, lycopene was effective in protecting against estrogen-induced cholestatic liver injury through its antioxidant and anti-inflammatory activities. Therefore, lycopene might be a potentially effective drug for protection against cholestasis in susceptible women during pregnancy, administration of oral contraceptives, or postmenopausal replacement therapy.

Mohamed, S. S., N. F. Abdeltawab, W. Wadie, L. A. Ahmed, R. M. Ammar, S. Rabini, H. Abdel-Aziz, and M. T. Khayyal, "Effect of the standard herbal preparation, STW5, treatment on dysbiosis induced by dextran sodium sulfate in experimental colitis.", BMC complementary medicine and therapies, vol. 21, issue 1, pp. 168, 2021. Abstract

BACKGROUND: The standardized herbal preparation, STW 5, is effective clinically in functional gastrointestinal disorders and experimentally in ulcerative colitis (UC). The present study explores whether the beneficial effect of STW 5 involves influencing the intestinal microbiota.

METHODS: UC was induced in Wistar rats by feeding them 5% dextran sodium sulfate (DSS) in drinking water for 7 days. Rats were treated concurrently with STW 5 and sacrificed 24 h after last drug administration. Fecal samples were used to determine changes in the abundance of selected microbial phyla and genera using real-time PCR.

RESULTS: Induction of UC led to dysbiosis and changes in the gut microbiota. The changes included an increase in some genera of the Firmicutes, namely Enterococcus, and a decrease in others, namely Blautia, Clostridium, and Lactobacillus. DSS further induced a marked increase in the abundance of Bacteroidetes and Proteobacteria as well as in the relative abundance of Actinobacteria and its genus Bifidobacterium. Methanobrevibacter levels (phylum Euryarchaeota) were also increased. Microbial dysbiosis was associated with changes in various parameters of colonic inflammation. STW 5 effectively guarded against those changes and significantly affected the indices of edema and inflammation in the UC model. Changes in colon length, colon mass index, inflammatory and apoptotic markers, and histological changes induced by DSS were also prevented.

CONCLUSIONS: Dysbiosis plays a contributing role in the development of DSS-induced UC. Derangements in the microbial flora and associated inflammatory processes were largely prevented by STW 5, suggesting that this effect might contribute towards its beneficial usefulness in this condition.

Wadie, W., N. S. Abdel-Razek, and H. A. Salem, "Phosphodiesterase (1, 3 & 5) inhibitors attenuate diclofenac-induced acute kidney toxicity in rats.", Life sciences, vol. 277, pp. 119506, 2021. Abstract

Diclofenac, one of the most commonly used non-steroidal anti-inflammatory drugs, leads to severe adverse effects on the kidneys. The aim of the present study was to investigate the potential pretreatment effect of phosphodiesterase (1, 3 & 5) inhibitors on diclofenac-induced acute renal failure in rats. Rats orally received pentoxifylline (100 mg/kg), vinpocetine (20 mg/kg), cilostazol (50 mg/kg), or sildenafil (5 mg/kg) once per day for 6 consecutive days. Diclofenac (15 mg/kg) was injected on day-4, -5 and -6 in all groups except normal control group. The used phosphodiesterase inhibitors significantly reduced the diclofenac-induced elevation in the serum levels of blood urea nitrogen, creatinine and cystatin C. Moreover, the renal tissue contents of tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB as well as the protein expression of toll-like receptor (TLR) 4 and high mobility group box (HMGB) 1 were markedly reduced by the used phosphodiesterase inhibitors, as compared to the diclofenac control. This was reflected on the marked improvement in histopathological changes induced by diclofenac. Sildenafil showed the best protection regarding TNF-α and NF-κB, while cilostazol showed the best results regarding TLR4, HMGB1 and histopathological examination. This study revealed the good protective effect of these phosphodiesterase inhibitors against diclofenac-induced acute renal failure.

Al-Shorbagy, M. Y., W. Wadie, and D. M. El-Tanbouly, "Trimetazidine Modulates Mitochondrial Redox Status and Disrupted Glutamate Homeostasis in a Rat Model of Epilepsy.", Frontiers in pharmacology, vol. 12, pp. 735165, 2021. Abstract

Mitochondrial oxidative status exerts an important role in modulating glia-neuron interplay during epileptogenesis. Trimetazidine (TMZ), a well-known anti-ischemic drug, has shown promising potential against a wide range of neurodegenerative disorders including epilepsy. Nevertheless, the exact mechanistic rationale behind its anti-seizure potential has not been fully elucidated yet. Herein, the impact of TMZ against mitochondrial oxidative damage as well as glutamate homeostasis disruption in the hippocampus has been investigated in rats with lithium/pilocarpine (Li/PIL) seizures. Animals received 3 mEq/kg i.p. LiCl followed by PIL (single i.p.; 150 mg/kg) 20 h later for induction of seizures with or without TMZ pretreatment (25 mg/kg; i.p.) for five consecutive days. Seizure score and seizure latency were observed. Mitochondrial redox status as well as ATP and uncoupling protein 2 was recorded. Moreover, glutamate homeostasis was unveiled. The present findings demonstrate the TMZ-attenuated Li/PIL seizure score and latency. It improved mitochondrial redox status, preserved energy production mechanisms, and decreased reactive astrocytes evidenced as decreased glial fibrillary acidic protein immune-stained areas in hippocampal tissue. In addition, it modulated phosphorylated extracellular signal-regulated kinases (-ERK1/2) and p-AMP-activated protein kinase (-AMPK) signaling pathways to reflect a verified anti-apoptotic effect. Consequently, it upregulated mRNA expression of astroglial glutamate transporters and reduced the elevated glutamate level. The current study demonstrates that TMZ exhibits robust anti-seizure and neuroprotective potentials. These effects are associated with its ability to modulate mitochondrial redox status, boost -ERK1/2 and -AMPK signaling pathways, and restore glutamate homeostasis in hippocampus.

Zaky, D. A., W. M. Eldehna, A. M. El Kerdawy, D. M. Abdallah, H. S. El Abhar, and W. Wadie, "Recombinant human growth hormone improves the immune status of rats with septic encephalopathy: The role of VEGFR2 in the prevalence of endoplasmic reticulum stress repair module.", International immunopharmacology, vol. 101, issue Pt B, pp. 108370, 2021. Abstract

Septic encephalopathy results from the intense reaction of the immune system to infection. The role of growth hormone (GH) signaling in maintaining brain function is well established; however, the involvement of the vascular endothelial growth factor receptor-2 (VEGFR2) in the potential modulatory effect of GH on septic encephalopathy-associated endoplasmic reticulum stress (ERS) and blood-brain barrier (BBB) permeability is not well-understood. Therefore, after the induction of mid-grade sepsis by cecal ligation/perforation, rats were subcutaneously injected with recombinant human GH (rhGH)/somatropin alone or preceded by the VEGFR2 antagonist WAG-4S for 7 days. rhGH/somatropin reduced bodyweight loss and plasma endotoxin, maintained the hyperthermic state, and improved motor/memory functions. Additionally, rhGH/somatropin increased the junctional E-cadherin and β-catenin pool in the cerebral cortex to enhance the BBB competency, effects that were abolished by VEGFR2 blockade. Also, it activated cortical VEGFR2/mammalian target of the Rapamycin (mTOR) axis to mitigate ERS. The latter was reflected by the deactivation of the inositol-requiring enzyme-1α (IRE1α)/spliced X-box binding protein-1 (XBP1s) trajectory and the reduction in the protein levels of the death markers, C/EBP homologous protein (CHOP)/growth arrest and DNA damage-153 (GADD153), c-jun-N-terminal kinase (JNK), and caspase-3 with the simultaneous augmentation of expression of the unfolded protein response transducer proteinkinaseR-like ERkinase (PERK). Furthermore, rhGH/somatropin suppressed the phosphorylation of eukaryotic initiation factor-2α (eIF2α), upregulated the gene expression of activating transcription factor-4 (ATF4), GADD34, and glucose-regulated protein-78/binding immunoglobulin (GRP78/Bip). Moreover, it increased the glutathione level and reduced lipid peroxidation in the cerebral cortex. The VEGFR2 antagonist reversed the effect of rhGH/somatropin on PERK and IRE1α and boosted the apoptotic markers but neither affected p-eIF2α nor GADD34. Hence, we conclude that VEGFR2 activation by rhGH/somatropin plays a crucial role in assembling the BBB adherens junctions via its antioxidant capacity, ERS relief, and reducing endotoxemia in septic encephalopathy.

Shawki, S. M., M. A. Saad, R. M. Rahmo, W. Wadie, and H. S. El-Abhar, "Liraglutide Improves Cognitive and Neuronal Function in 3-NP Rat Model of Huntington's Disease.", Frontiers in pharmacology, vol. 12, pp. 731483, 2021. Abstract

Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by progressive motor, psychiatric, and cognitive abnormalities. The antidiabetic drug liraglutide possesses a neuroprotective potential against several neurodegenerative disorders; however, its role in Huntington's disease (HD) and the possible mechanisms/trajectories remain elusive, which is the aim of this work. Liraglutide (200 μg/kg, s.c) was administered to rats intoxicated with 3-nitropropionic acid (3-NP) for 4 weeks post HD model induction. Liraglutide abated the 3-NP-induced neurobehavioral deficits (open field and elevated plus maze tests) and histopathological changes. Liraglutide downregulated the striatal mRNA expression of HSP 27, PBR, and GFAP, while it upregulated that of DARPP32. On the molecular level, liraglutide enhanced striatal miR-130a gene expression and TrKB protein expression and its ligand BDNF, while it reduced the striatal protein content and mRNA expression of the death receptors sortilin and p75NTR, respectively. It enhanced the neuroprotective molecules cAMP, p-PI3K, p-Akt, and p-CREB, besides modulating the -GSK-3β/-β-catenin axis. Liraglutide enhanced the antioxidant transcription factor Nrf2, abrogated TBARS, upregulated both Bcl2 and Bcl-XL, and downregulated Bax along with decreasing caspase-3 activity. Therefore, liraglutide exerts a neurotherapeutic effect on 3-NP-treated rats that is, besides the upturn of behavioral and structural findings, it at least partially, increased miR-130a and modulated PI3K/Akt/CREB/BDNF/TrKB, sortilin, and p75NTR, and Akt/GSK-3β/-β-catenin trajectories besides its capacity to decrease apoptosis and oxidative stress, as well as its neurotrophic activity.

Ibrahim, A. B., H. F. Zaki, W. W. Ibrahim, M. M. Omran, and S. A. Shouman, "Evaluation of tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer cells.", Toxicology reports, vol. 6, pp. 1114-1126, 2019. Abstract

Tamoxifen (TAM) is a nonsteroidal antiestrogen drug, used in the prevention and treatment of all stages of hormone-responsive breast cancer. Simvastatin (SIM), a lipid-lowering agent, has been shown to inhibit cancer cell growth. The study aimed at investigating the impact of using SIM with TAM in estrogen receptor-positive (ER+) breast cancer cell line, T47D, as well as in mice-bearing Ehrlich solid tumor. The cell line was treated with different concentrations of TAM or/and SIM for 72 h. The effects of treatment on cytotoxicity, oxidative stress markers, apoptosis, angiogenesis, and metastasis were investigated. Our results showed that the combination treatment decreased the oxidative stress markers, glucose uptake, VEGF, and MMP 2 &9 in the cell line compared to TAM- treated cells. Drug interaction of TAM and SIM was synergistic in T47D by increasing the apoptotic makers Bax/BCL-2 ratio and caspase 3 activity. Additionally, , the combination regimen resulted in a non-significant decrease in the tumor volume compared to TAM treated group. Moreover, the combined treatment decreased the protein expression of TNF-α, NF-kB compared to control. In conclusion, our results suggest that SIM may serve as a promising treatment with TAM for improving the efficacy against estrogen receptor-positive (ER+) breast cancer.

Fahim, V. F., W. Wadie, A. N. Shafik, and M. I. Attallah, "Role of simvastatin and insulin in memory protection in a rat model of diabetes mellitus and dementia.", Brain research bulletin, vol. 144, pp. 21-27, 2019. Abstract

OBJECTIVES: The memory protective role of simvastatin and/or insulin, in a rat model of diabetes mellitus (DM) and dementia was examined.

METHODS: DM was induced by an intraperitoneal injection of streptozotocin. Diabetic rats were divided into untreated; insulin treated; simvastatin treated with 10 and 20 mg/kg/day; and combined insulin plus simvastatin treatment in the previous doses. Treatment started after blood glucose elevation and persisted for 6 weeks. Morris water maze and Y maze tests were held to detect behavioral changes. Serum glucose, cholesterol and insulin levels, the hippocampi insulin, amyloid beta (Aß) 1-42 and oxidative stress markers were measured.

RESULTS: Insulin increased the time spent in the target quadrant in the Morris water maze test and the percentage of alternations in the Y maze test, despite the mild improvements in brain parameters demonstrated by amyloid beta 1-42, malondialdehyde and reduced glutathione levels; while simvastatin in both doses improved brain parameters with no positive impact on behavioral tests. Insulin combined with simvastatin 20 mg/kg/day was effective in enhancing the behavioral tests and the measured brain parameters.

CONCLUSIONS: Treatment with insulin and simvastatin could provide a promising memory protective effect in diabetics.

Khayyal, M. T., W. Wadie, E. A. Abd El-Haleim, K. A. Ahmed, O. Kelber, R. M. Ammar, and H. Abdel-Aziz, "STW 5 is effective against nonsteroidal anti-inflammatory drugs induced gastro-duodenal lesions in rats.", World journal of gastroenterology, vol. 25, issue 39, pp. 5926-5935, 2019. Abstract

BACKGROUND: Proton pump inhibitors are often used to prevent gastro-intestinal lesions induced by nonsteroidal anti-inflammatory drugs. However, they are not always effective against both gastric and duodenal lesions and their use is not devoid of side effects.

AIM: To explore the mechanisms mediating the clinical efficacy of STW 5 in gastro-duodenal lesions induced by nonsteroidal anti-inflammatory drugs (NSAIDs), exemplified here by diclofenac, in a comparison to omeprazole.

METHODS: Gastro-duodenal lesions were induced in rats by oral administration of diclofenac (5 mg/kg) for 6 successive days. One group was given concurrently STW 5 (5 mL/kg) while another was given omeprazole (20 mg/kg). A day later, animals were sacrificed, stomach and duodenum excised and divided into 2 segments: One for histological examination and one for measuring inflammatory mediators (tumor necrosis factor α, interleukins-1β and 10), oxidative stress enzyme (heme oxygenase-1) and apoptosis regulator (B-cell lymphoma 2).

RESULTS: Diclofenac caused overt histological damage in both tissues, associated with parallel changes in all parameters measured. STW 5 and omeprazole effectively prevented these changes, but STW 5 superseded omeprazole in protecting against histological damage, particularly in the duodenum.

CONCLUSION: The findings support the therapeutic usefulness of STW 5 and its superiority over omeprazole as adjuvant therapy to NSAIDs to protect against their possible gastro-duodenal side effects.