Common causes of vaccine failure

Zimbabwe: 03/07/2014

Dr Sainos K. Manzira
What is Vaccination?

- the *administration* of antigenic material *to stimulate* an individual's *immune system* *to develop adaptive immunity* *to a pathogen*.

- The process of administering a vaccine.
How do live vaccines work?

Must replicate within the host

- attach
- invasion
- replicate

Immune response

- antibodies
- white blood cells
Why vaccinate?

• Effective vaccine application is a crucial part of modern poultry production

• Vaccination and immunization are not the same.

• Immunization is the result of an effective vaccination procedure.
Types of vaccines

- Conventional live vaccines
- Inactivated vaccines
- Recombinant vaccines
- Immune complex vaccines
Vaccination methods

- **Oral/ drinking water**
 - i.e. IBV, NDV, IBDV

- **Spray**
 - i.e. IBV, NDV, ILT

- **Eye drop**
 - i.e. IBV, NDV, ILT, *M. gallisepticum*

- **Wing web**
 - i.e. Poxvirus, AE, CAV (live)

- **Intramuscular**
 - ND, IBV, IBD inactivated and/or Reovirus combinations

- **Subcutaneous**
 - Several combinations
 - Fowl Cholera, Infectious Coryza, Salmonella spp....
Vaccination failure

Causes- When and where?

- Poor cold chain maintenance
- Vaccine reconstitution
- Vaccine administration
- Health status of the birds
- Human factor/ personnel
- Post vaccination
Vaccination failure

Causes of vaccination failure

• **Poor cold chain maintenance**
 • Vaccine storage
 • Vaccine transportation

• **Vaccine reconstitution**
 • Water quality
 • Exposure to UV light (direct sunlight)
Vaccination failure

Causes of vaccination failure

- Vaccine administration
 - The vaccine
 - Timing of vaccination
 - Farm or house management conditions - the environment
 - Bird activity during the vaccination process
 - Vaccination technique
 - Duration of vaccination
Vaccination failure

Causes of vaccination failure

• Health status of the birds
 • Presence of respiratory diseases
 • Fungal diseases
 • Immunosuppressed flocks

• Human factor
 • Rushed vaccinations
 • Bad handling birds
 • Missed birds

• Post vaccination
 • Bird activity post vaccination
“Poor Vaccine Administration is the Most Common Cause of Vaccine Failure”

“Natural inclination to blame the vaccines”
Vaccination failure - How?

Poor cold chain maintenance

• Vaccine storage
 • Temperature fluctuations outside normal range
 • Electricity outages
 • Frequent opening of refrigerator door

• Vaccine transportation
 • Transportation without cooler boxes and ice-packs
 • Ice packs in direct contact with vaccine bottle
Live Vaccines

Recommendations:
Storage temperatures between 2-8 degrees Celsius
• Enough ice packs
• Stored in appropriate containers
Record expiration date and serial number
Vaccine reconstitution
• Quality and temperature of the diluents
• Time from re-suspension to use
 – IBV: 50% decrease in titer after 1 hour
Inactivated Vaccines

Recommendations:
- Storage temperature
 - 2 to 8 degrees Celsius
- Avoid direct contact with sunlight
- Avoid freezing temperatures
 - Prior to use:
 - Overnight at room temperature
 - Warmed before administration
 - Decrease viscosity
 - Lower inflammatory reaction
Vaccination failure

Vaccine reconstitution

- Water quality
 - Heat- high water temperature
 - Heavy metals
 - Chlorine
 - Disinfectants and detergents
 - Organic Matter

- Exposure to UV light (direct sunlight)
 - Direct exposure kills live vaccines
Live vaccines

Protection of live vaccines
Water treatment with skimmed milk powder
Vac-Safe™

Dissolving effervescent tablet
Neutralises chlorine levels (up to 5 ppm)
Contains a blue dye
Substitutes the use of skimmed milk powder
Acts as a pH buffer in alkaline water
Can be used
 • automatic dosing systems
 • spray
Contains no animal residues
Vaccination failure

Vaccine reconstitution

• Reconstitution of too much vaccine
 • Vaccine staying reconstituted for too long before vaccination

• Time taken to reconstitute vaccine
 • Mareks vaccines should be re-constituted within 1 minute
 • Convectional lyophilized vaccines should be re-constituted as soon as possible
Vaccination failure

Causes of vaccination failure

Vaccine administration

• The vaccine
 • Vaccine expired.
 • Using the inappropriate strain e.g IBDV vaccines
 • Using left over vaccine, ether live or killed vaccines.

• Timing of vaccination
 • Ambient temperature during vaccination
 • Effect of maternal antibodies
 • Usual onset of field infections
Water consumption nipple vs bell
Stability of Emulsified Vaccines: Water in Oil

- **Normal**: Shake and Use
- **Creaming**: Shake and Use
- **Settling**: Shake and Use
- **Breaking**: Do Not Use
Vaccination failure

Causes of vaccination failure

Vaccine administration

• Farm or house management conditions - the environment
 • Poor ventilation/high ammonia levels vs. respiratory reactions after vaccination
 • IBV, NDV, ILT and/or M. *gallisepticum*
 • House temperature vs. immune response after vaccination
 • Comfortable conditions for vaccination crew or vaccinated birds?
Poor Litter Condition

Dusty Houses
Low Temperatures (Brooding)
Uneven Light Intensity
High Temperatures (Brooding)
Vaccination failure

Causes of vaccination failure

Vaccine administration

• Bird activity during the vaccination process
 • High bird activity
 • Stress during vaccination
Vaccination technique

- **Drinking water**
 - Ambient temperature
 - Length of water withdrawal time
 - Water temperature
 - Type of drinker system
 - Drinker space
 - Stability of the water
Staining of Tongue
Vaccination failure

Vaccination technique

- Spray vaccination
 - Droplet behaviour
 - Impact of droplet size
 - Water quality
 - Climatic conditions
 - House layout
Vaccination failure

Vaccination technique

- **Spray vaccination**
 - Vaccination site (hatchery/ farm)
 - Equipment used for spray vaccination
 - Experience of the vaccinator
 - **Vaccine loss**— due to settlement, evaporation and drift of the droplets.
Vaccination failure

Spray vaccination

• Settlement
 • Loss of vaccine solution due to droplets which land on the ground.

Solution

• Group the birds together before vaccination
Spray vaccination

- **Evaporation**
 - Affects all droplets between emission and impact.
 - Reduction in droplet size, or droplets to evaporate completely.
 - Evaporation of droplets is faster if the droplets are small.
 - High ambient temperature and low relative humidity enhances evaporation.
Spray vaccination

- **Drift**
 - Loss of droplets caused by movement of air.
 - All droplets smaller than 200 micron are susceptible to drift.

Solution

- Turn off the ventilation during spraying.
- Close curtains when spraying in open houses.
Vaccination failure

Spray vaccination

Diagram showing the process of spray vaccination with labels for:
- Emission
- Losses by Drift
- Losses by Evaporation
- Impact
- Nozzle
- Jet emitted
- Losses by Settlement
- Useful fraction
Vaccination technique

• **Eye drop vaccination**
 • One drop per chicken in the eye/ positioning of dropper
 • Correct size of the drop
 • Scratching the eye
 • Touch the eye with the dropper
 • Dropping on the eyelid, closed eye
Vaccination failure

Vaccination technique

- Wing web injection
 - Site of inoculation: middle of wing web
 - Avoid feathers and intramuscular inoculation
 - Replace the needles periodically
 - Check the level of the reconstituted vaccine inside the vial
 - Needle dents should be completely immersed in the vaccine
Vaccination failure

Vaccination technique

• **Subcutaneous injection**
 - Incorrect site of inoculation
 - Missing the subcutaneous space
 - Needle: 18 gauge, ½ to ¼ inch
 - Replacing every 1,000 doses
 - Direction: parallel to the neck
Subcutaneous Inoculation
Correct
Vaccination technique

- Intramuscular injection
 - Proper needle: 16 or 18 gauge, ¼ inch
 - Replaced at least every 1,000 doses
 - Site of inoculation:
 - Superficial pectoral muscle
Vaccination failure

Vaccination technique

- **Intramuscular injection vaccination**
 - 1 to 1.5 inches lateral to the keel bone
 - Direction of the needle: caudally at a 45° angle
 - Avoid inserting the needle perpendicular to the body
 - Liver puncture
 - Vaccine deposited in the abdominal cavity
 - Complete the injection before withdrawing the needle
Vaccination failure

Vaccine administration

- Duration of vaccination
 - Vaccine should be consumed within 1.5 hours, max 2 hours
 - Live Mareks vaccine should be injected within 1 hour of reconstitution
 - Injectable inactivated vaccines should be administered within 2 hours
Health status of the birds

- Presence of respiratory diseases
 - Field challenge
 - Rolling reactions
- Fungal diseases
 - Aspergillosis
- Immunosuppressed flocks
 - IBD, CAV, Marek’s, ALV, Mycotoxins
 - Secondary bacterial infections
Health Status Prior to Vaccination
Vaccination failure

• Human factor
 • Rushed vaccinations
 • Missed birds

• Post vaccination
 • Bird activity post vaccination
 • Minimise activity post vaccination
 • Immediately opening curtains after vaccination
 • Immediately increasing light intensity
Causes of vaccination failure

- Poor vaccine storage
- Inappropriate vaccine transportation
- Poor water quality
- Exposure to UV light (direct sunlight)
- Poor vaccine condition
- Inappropriate choice of vaccine
- Wrong timing of vaccination
Vaccination failure- Summary

Causes of vaccination failure

- Poor vaccination technique
- Poor house environment- microclimate
- Duration of vaccination too long
- Presence of respiratory diseases
- Immunosuppressed flocks
- Missed birds
- Immediate and excessive bird activity- during and post vaccination process
Serological Evaluation

Look for antibody response

- ELISA tests
- Vaccination is successful if
 - antibody levels (or titre) are high and uniform
- Establish baseline titers
 - take average titre for the last 12 months
- Compare the manufacture’s baseline with your baseline
IBD-XR ELISA Titers

Titer Groups

13 wks: GMean = 925; % CV = 75.6
17 wks: GMean = 18704; % CV = 17.7
30 wks: GMean = 15492; % CV = 14.3
Reovirus ELISA Titers

13 wks: GMean = 4692; % CV = 49.1
18 wks: GMean = 16797; % CV = 40.6
32 wks: GMean = 13426; % CV = 21.5
AE ELISA Titers

Coefficients of Variation (%)

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Flock A</th>
<th>Flock B</th>
<th>Flock C</th>
<th>Flock D</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>101.5</td>
<td>109.6</td>
<td>103.5</td>
<td>126.1</td>
</tr>
<tr>
<td>18</td>
<td>51.1</td>
<td>65.2</td>
<td>59.9</td>
<td>40.9</td>
</tr>
</tbody>
</table>
Commercial vaccines are safe and efficacious

- Regulated by various regulatory authorities
 - Purity, safety, potency and efficacy testing
- Proper storage, handling, transportation and administration is critical to their success
It is crucial to periodically train and evaluate vaccination crews

- Goal: development of an adequate local, humoral and cellular immunity
 - Protect breeders and layers during production
 - Protect progenies against early challenge in the field

It is critical to avoid the loss of properly trained personnel in charge of vaccine administration

- Fundamental for the success of any poultry company
THANK YOU!
TATENDA!
SIYABONGA!
BAIE DANKIE!
MUCHAS GRACIAS!
THANK YOU!
TATENDA!
SIYABONGA!
BAIE DANKIE!
MUCHAS GRACIAS!