
Vol.:(0123456789)1 3

Tropical Animal Health and Production          (2023) 55:383  
https://doi.org/10.1007/s11250-023-03796-w

REVIEWS

Gallibacterium anatis infection in poultry: a comprehensive review

Wafaa A. Abd El‑Ghany1 · Abdelazeem M. Algammal2 · Helal F. Hetta3 · Ahmed R. Elbestawy4

Received: 29 November 2022 / Accepted: 10 October 2023 
© The Author(s) 2023

Abstract
Gallibacterium anatis (G. anatis), a member of the Pasteurellaceae family, normally inhabits the upper respiratory and 
lower genital tracts of poultry. However, under certain circumstances of immunosuppression, co-infection (especially with 
Escherichia coli or Mycoplasma), or various stressors, G. anatis caused respiratory, reproductive, and systemic diseases. 
Infection with G. anatis has emerged in different countries worldwide. The bacterium affects mainly chickens; however, other 
species of domestic and wild birds may get infected. Horizontal, vertical, and venereal routes of G. anatis infection have 
been reported. The pathogenicity of G. anatis is principally related to the presence of some essential virulence factors such 
as Gallibacterium toxin A, fimbriae, haemagglutinin, outer membrane vesicles, capsule, biofilms, and protease. The clinical 
picture of G. anatis infection is mainly represented as tracheitis, oophoritis, salpingitis, and peritonitis, while other lesions 
may be noted in cases of concomitant infection. Control of such infection depends mainly on applying biosecurity measures 
and vaccination. The antimicrobial sensitivity test is necessary for the correct treatment of G. anatis. However, the develop-
ment of multiple drug resistance is common. This review article sheds light on G. anatis regarding history, susceptibility, 
dissemination, virulence factors, pathogenesis, clinical picture, diagnosis, and control measures.

Keywords G. anatis · Virulence factors · Pathogenesis · Diagnosis · Antimicrobial sensitivity · Vaccines

Introduction

Certain infections of poultry have a tremendous direct 
adverse impact on egg production or an indirect effect on 
the health status of poultry. One of these bacterial infec-
tions is Gallibacterium anatis (G. anatis) infection. G. 
anatis is a member of the family Pasteurellaceae (Chris-
tensen et al. 2003; Bisgaard et al. 2009). In 1981, the sepa-
rate taxonomy of the family Pasteurellaceae, which mainly 

consisted of isolated Gram-negative coccobacilli from 
animals, was established. To date, this family includes 15 
genera: Pasteurella, Avibacterium, Actinobacillus, Galli-
bacterium, Haemophilus, Mannheimia, Aggregatibacter, 
Bibersteinia, Lonepinella, Phocoenobacter, Histophilus, 
Nicoletella, Volucribacter, Chelonobacter, and Basfia 
(Janda 2011).

According to several studies, Gallibacterium caused 
deaths in domestic birds and occasionally people, sug-
gesting it was more dangerous than an opportunistic infec-
tion (Driessche et al. 2020). The importance of G. anatis 
was underestimated for a long time due to an incomplete 
understanding of the pathogenesis, virulence, and growth 
kinetics (Kristensen et al. 2011). However, the overall 
rate of G. anatis disease increased in layer, breeder, 
and boiler chicken flocks in previous years (Elbestawy 
et al. 2018; Krishnegowda et al. 2020; Algammal et al. 
2022a). These days, this newly developing illness poses a 
grave threat to the world’s chicken meat and egg industry 
(Antenucci et al. 2020; Algammal et al. 2021a; Elewa, 
2021; Sorescu et al. 2021). The disease is widely dis-
tributed in American, European, Australian, African, and 
Asian countries. Although G. anatis may be regarded as a 
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normal component of the microbiota of the lower genital, 
terminal digestive, and upper respiratory tracts under cer-
tain environmental and stress circumstances, it initiates 
reproductive and systemic disorders (Paudel et al. 2015; 
Ataei et al. 2017). Domestic and non-domestic species of 
birds and mammals, including humans, are susceptible 
to G. anatis infection (Aubin et al. 2013; Krishnegowda 
et al. 2020).

This bacterium has several virulence factors causing 
reproductive and respiratory tissue damage, particularly in 
the presence of co-infections and other stressors related to 
environmental conditions (Paudel et al. 2017a,b). G. ana-
tis infection causes either local or systemic affection and is 
typically accompanied by a notable decline in laying per-
formance, 5–10% egg drop, adverse changes in the eggshell 
quality, increased mortality, respiratory manifestations, 
and diarrhea (Paudel et al. 2014a). Oophoritis, salpingi-
tis, epididymitis, peritonitis, septicemia, respiratory tract 
lesions, enteritis, hepatic necrosis, and pericarditis are the 
most common lesions of G. anatis infections (Driessche 
et al. 2020; Krishnegowda et al. 2020).

Recent and advanced diagnostic and identification tech-
niques were adopted alongside routine cultural or bio-
chemical phenotypic assays and molecular characterization 
for rapidly detecting G. anatis infection (Christensen et al. 
2003; Huangfu et al. 2012).

Despite the sensitivity of G. anatis to many antimicro-
bials, some cases are non-responsive, and disease recur-
rences were reported. The development of multi-drug 
resistance (MDR), notable antigenic variation, and inef-
fective elimination of G. anatis by the host are the key 
limitations for disease control (El-Adawy et al. 2018; Hess 
et al. 2019). The widespread antibiotic resistance leads to 
ineffective treatment (Johnson et al. 2013). The antibiotic 
sensitivity of G. anatis strains continuously varies; thus, 
frequent in vitro assessment of strains is essential (Elbes-
tawy et al. 2018). Few vaccines were exploited against G. 
anatis and are being estimated. To better understand G. 
anatis infection in poultry, this review discusses G. anatis 
history, susceptibility, dissemination, virulence factors, 
pathogenesis, clinical picture, diagnosis, and control and 
preventive measures.

History

In 1950, G. anatis was found as a component of normal 
microbiota in the cloacae of apparently healthy chickens 
and designated as a “hemolytic cloaca bacterium” (Kjos-
Hansen 1950). Later on, DNA hybridization demonstrated 
that avian Pasteurella hemolytica (P. hemolytica), Act-
inobacillus salpingitidis (A. salpingitidis), and P. anatis 

belong to different genera inside the family Pasteurel-
laceae (Bisgaard 1977), while Christensen et al. (2003) 
classified Gallibacterium into a separate and independent 
genus. Taxon 1, the 3rd group of strains labeled P. ana-
tis, was closely related to A. salpingitidis and avian P. 
haemolytica (El-Adawy et al. 2018). P. hemolytica was 
then re-classified within the family Pasteurellaceae into 
G. anatis biovar hemolytica based on 16S rRNA gene 
sequences (Christensen et al. 2003; Bojesen et al. 2008; 
Bisgaard et al. 2009). Now, the genus consists of 4 known 
species [G. anatis (biovar haemolytica and biovar ana-
tis), G. salpingitidis, G. melopsittaci, and G. trehalosi 
fermentans], 3 genomospecies (1, 2, and 3), and unnamed 
group V (Christensen et al. 2003; Bisgaard et al. 2009; 
Janda 2011). G. anatis is a Gram-negative pleomorphic, 
capsulated, non-motile, non-spore former, and facultative 
anaerobic bacterium [requires micro-aerophilic condi-
tions for growth on blood agar medium supplemented with 
5–10% carbon dioxide  (CO2)] (Christensen et al. 2003). 
According to Bisgaard (1982), phenotypically, G. anatis 
is divided into the “hemolytica” biovar, which produces 
β-hemolysis, and the “anatis” biovar, which is not a hemo-
lytic variation.

The disease emerged in several continents, such as 
Europe, the Americas, Australia, Africa, and Asia, indi-
cating these bacteria’s importance and worldwide distribu-
tion. For instance, G. anatis infections have been reported 
in Europe, including Germany (Matthes et al. 1969; Mat-
thes and Loliger 1976; Mraz et al. 1976; Bisgaard 1977), 
Denmark (Bisgaard 1977; Bojesen 2003), Austria (Mirle 
et al. 1991; Neubauer et al. 2007), England, Norway, Swe-
den, and Czech Republic (Jordan et al. 2005; Galaz-Luna 
et al. 2009), and Romania (Sorescu et al. 2021). Moreover, 
in American countries, i.e., the USA (Shaw et al. 1990; 
Zellner et al. 2004; Jones et al. 2013), Canada (Shapiro 
et al. 2013), Mexico (Vazquez et al. 2003; Bojesen et al. 
2007a, 2008; Chavez et al. 2017b), and Peru (Mendoza 
et al. 2014), cases of G. anatis were recorded. In addi-
tion, Gallibacterium have been recorded in Australia 
(Gilchrist, 1963), some African countries, such as Nige-
ria (Addo and Mohan, 1985; Lawal et al. 2017), Egypt 
(Elbestawy, 2014; Sorour et al. 2015; Abd El-Hamid et al. 
2016, 2018; Mataried, 2016; Elbestawy et al. 2018; Elewa, 
2021; Algammal et al. 2022a), and Morocco (Nassik et al. 
2019), and many Asian counties, i.e., Japan (Suzuki et al. 
1996; Huangfu et al. 2012; Zhang et al. 2017), Taiwan (Lin 
et al. 2001), China (Chuan-qing et al. 2008; Guo, 2011), 
India (Singh, 2016; Singh et al. 2016, 2018), Iran (Ataei 
et al. 2017, 2019; Allahghadry et al. 2021), Turkey (Yaman 
and Sahan 2019), and Syria (Janetschke and Risk 1970). 
The incidence of G. anatis infection in various parts of the 
world is depicted in Table 1.
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Table 1  The first detection, incidence rate, and diagnostic methods of G. anatis infection worldwide (after establishment of new taxonomy, Gal-
libacterium, in 2003)

NA not available

Continent Country Type of birds Collected organs Diagnostic method(s) Incidence rate (%) Reference(s)

Africa Egypt Layer chickens Trachea, ovary, and 
oviduct

Phenotypic identifi-
cation, cPCR, and 
sequencing

13.1 Elbestawy (2014)

Nigeria Muscovy ducks Tracheal and cloaca 
swabs and ovarian 
tissue

Phenotypic identifica-
tion

33.2 Lawal et al. (2017)

Morocco Layer chickens Ovary, trachea, and 
cloaca

Phenotypic identifica-
tion and cPCR

100 Nassik et al. (2019)

Europe Denmark Layer and breeder 
chickens

Trachea and cloaca Phenotypic identifica-
tion and cPCR

28.8 Christensen et al. 
(2003)

Bojesen et al. (2003a, 
b)

Austria layer chickens Oviduct Phenotypic identifica-
tion

96.7 Neubauer et al. (2007)

Poland Peacocks Lung Phenotypic identifica-
tion

5 Rzewuska et al. (2007)

Romania Backyard chicken 
flock

Ovaries, lung, heart, 
and spleen

Phenotypic identifica-
tion

3.3 Sorescu et al. (2021)

Asia China Layer chickens Salpinx, ovary, liver, 
spleen, and upper 
respiratory tract

Phenotypic identifica-
tion and cPCR

100 Chuan-qing et al. 
(2008)

India Ducks, pigeons, 
broiler, and layer 
chickens

Heart blood, spleen, 
and tracheal swabs

Phenotypic identifica-
tion and cPCR

100 Singh et al. (2018)

Turkey Layer chickens Trachea, lung, liver, 
and heart

Phenotypic identifica-
tion and cPCR

2.2 Yaman and Sahan 
(2019)

Iran Layer chickens Ovaries, oviduct, 
uterus, cloaca, and 
abdominal cavity

Phenotypic identifica-
tion and cPCR

NA Ataei et al. (2017)

Australia Australia Layer chickens Cloaca and oviduct Phenotypic identifica-
tion

55.5–100 Shini et al. (2013)

North America USA Layer chickens NA Phenotypic identifi-
cation, cPCR, and 
sequencing

NA Johnson et al. (2011)

Broiler and breeder 
chickens

Joints, wattles, lungs, 
abdomen, and heart

Phenotypic identifi-
cation, cPCR. and 
sequencing

NA Jones et al. (2013)

• Immature broiler 
breeder chickens

• Breeder chickens
• Broiler chickens
• Layers hens

Liver, oviduct, ovary, 
joint, bone, lung, 
pericardium, and 
spleen

Phenotypic identifica-
tion

NA Shapiro et al. (2013)

Mexico Layer chickens Lung, trachea, ovary Phenotypic identifica-
tion and cPCR

76.6 Castellanos et al. 
(2006) Chavez et al. 
(2017a)

Panama Breeder chickens NA Phenotypic identifica-
tion and serology

NA Calderon and Thomas 
(2009)

South America Peru NA NA Restriction endonu-
clease enzyme of 
16S rRNA gene 
sequences

NA
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Susceptibility

Numerous domestic and wild avian species, including 
chickens, ducks, geese, turkeys, pigeons, pheasants, guinea 
fowls, budgerigars, peacocks, parrots, partridges, cattle 
egrets, web-footed galliformes, psittacine birds, and owls, 
may harbor G. anatis (Mushin et al. 1980; Bisgaard, 1982; 
Bojesen et  al. 2003a; Zellner et  al. 2004; Bojesen and 
Shivaprasad 2007; Christensen et  al. 2007a; Rzewuska 
et al. 2007; Bojesen et al. 2008; Persson and Bojesen, 2015; 
Sorour et al. 2015; Singh, 2016; Singh et al. 2016, 2018). 
Infection was reported even in non-avian species, namely, 
cattle, horses, pigs, sheep, and rabbits (Kristensen et al. 
2011; Lawal et  al. 2017). Furthermore, some G. anatis 
infections in humans have been detected (Aubin et al. 2013; 
Driessche et al. 2020). Regarding age susceptibility, older 
research studies have reported that young birds are less sus-
ceptible to G. anatis than adults (Bisgaard 1977; Mushin 
et al. 1980), whereas Huangfu et al. (2012) informed an 
extreme rate of detection and isolation of G. anatis from 
chickens aged 5–6, 12, 18, and 55–58 weeks. However, G. 
anatis was isolated from broiler chickens (Abd El-Hamid 
et al. 2016).

Infection and dissemination

The primary route of G. anatis infection is the horizontal 
one through the respiratory tract (Bisgaard 1977). There-
fore, this bacterium is primarily prevalent in flocks with 
low biosecurity measures (Bojesen et al. 2003a). Isolation 
of G. anatis from the different body organs indicates the 
systemic circulation and spread of the bacterium from 
its natural habitat (Zepeda et al. 2010). Affection of the 
reproductive organs may be associated with ascending 
infections from the cloaca (Bojesen et al. 2003a; Neu-
bauer et al. 2009). There is experimental evidence of ver-
tical transmission in embryonated eggs through the trans-
ovarian/oviduct route or the trans-eggshell route (Matthes 
and Hanschke 1977; Persson and Bojesen, 2015; Wang 
et al. 2018).

G. anatis was isolated from the egg yolk and ovaries of 
hens 10 days after the experimental infection (Shapiro et al. 
2013; Paudel et al. 2014a). In embryonated eggs, G. ana-
tis may penetrate the eggshell pores and infect the grow-
ing embryo causing mortality (Wang et al. 2018). Besides, 
venereal transmission has been suggested since G. anatis 
damages semen quality and causes epididymitis (Paudel 
et al. 2014b). Semen of G. anatis infected cockerels may 
function in transmission among adult birds and probably to 
their offspring.

Intranasal inoculation of cockerels with G. anatis resulted 
in the presence of the pathogen in the testis and epididymis 
within a week post-infection (pi). In addition, the sperm den-
sity was lower, total and progressive motility were lower, 
and membrane integrity was worse in the semen, all indicat-
ing a detrimental effect on fertility. The study of Neubauer 
et al. (2009) revealed that G. anatis affected 13-layer flocks, 
and the birds suffered from cannibalism (extensive wound 
pecking around the cloaca).

Zoonotic importance

It is presumed that G. anatis  is a food contaminant that 
transmits to humans. In 2013, in France, the first case of 
bacteremia initiated by G. anatis was reported in an immuno-
compromised woman infected through consuming contami-
nated food. The predominant symptoms include fever, severe 
abdominal pain, anemia, diarrhea, and neutropenia (Gaut-
ier et al. 2005; Aubin et al. 2013). Driessche et al. (2020) 
reported that poultry and cattle have a likely risk for zoonotic 
transmission of G. anatis, and further research should be con-
ducted to establish their zoonotic potential. Recently, Wang 
et al. (2023) reported a case of acute watery diarrhea (7–8 
times daily) brought on by G. anatis in a 62-year-old man 
with type 2 diabetes and hypertension. There was no urgency, 
no bloating or pain in the abdomen, no dread of a cold or 
fever, and only nausea and vomiting were the symptoms 
of the illness. The bacteria were identified using 16S rRNA 
sequencing and matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry (MALDI-TOF–MS).

Virulence factors

The different virulence factors of G. anatis are illustrated 
in Fig. 1.

Gallibacterium toxin A 

Gallibacterium toxin A (GtxA) is a vital virulence protein 
that is responsible for the hemolytic property of G. anatis 
biovar hemolytica (Kristensen et al. 2011). It has a leuko-
toxic impact on chicken macrophage cell line HD11 and 
lyses red blood cells (RBCs) (Kristensen et al. 2010; Pers-
son and Bojesen 2015), and stimulates the immune response 
(Bager et al. 2014). This toxin has two domains, the C- and 
N-; both are needed for hemolytic activity. The C-terminus 
is similar to repeat in toxins (RTX) of the Pasteurellaceae 
family, while the N-terminal has RBCs lytic and leukocidal 
actions (Yang et al. 2020). The GtxA knockout mutant bac-
terium was exposed to a reduction of pathogenicity. It is 
comparable to the cytoskeletal protein talin, which binds 
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integrins to the actin and vacuolar cytoskeleton and is cru-
cial for interactions between the host and the bacteria (Kris-
tensen et al. 2010). Actin can support cell motility, recogni-
tion, adhesion, phagocytosis, signal modulation of immune 
cells, and free radical generation. When GtxA binds to actin 
in host immune cells, the cell shape can be altered, and cel-
lular signal transmission is impeded, and as a result, the 
bacteria can elude the host immune system (Aktories et al. 
2011). Nassik et al. (2019) demonstrated that all the molecu-
larly identified strains of G. anatis expressed the virulent 
GtxA. Tang et al. (2020) implied that GtxA plays a crucial 
function in an acute cytokine-mediated Th2-like response 
versus G. anatis infection in the ovarian tissue, helping 
in the pathogenesis of G. anatis infections in laying hens. 
Additionally, Tang and Bojesen (2020) attempted to explain 
the immunosuppressive effect of G. anatis GtxA during the 
interaction with chicken macrophage-like HD11 cells by 
encouraging cell adhesion and invasion, reducing the host 
inflammatory response based on an initial over-expression 
of interleukin (IL)-10 and a corresponding low-level expres-
sion of tumor necrotizing factor (TNF)-α, and concluded that 
GtxA induces cell death (apoptosis) without revealing clear 
causes. Fimbriae.

Strains of G. anatis can adhere to the host’s mucosal 
surface via hair-like structures, fimbriae, that belong to the 
F17-like family that contains 1–3 different fimbrial clusters 
(Johnson et al. 2013; Kudirkiene et al. 2014; Persson and 
Bojesen 2015). The F17-like fimbria (GalF-A) is encoded by 
4 genes: flfD, flfC, flfG, and flfA (Bager et al. 2013b). These 

fimbriae can bind to N-acetyl-D-glucosamine receptors of 
the host (Klemm and Schembri, 2000; Vaca et al. 2011; 
Lucio et al. 2012; Kudirkiene et al. 2014), and the adhesion 
protein assists in interacting to receptors (Lintermans et al. 
1991). In vivo, the fimbria protein (flfA) is crucial for viru-
lence (Bager et al. 2013b). Accordingly, fimbrial expression 
can control G. anatis tissue tropism (Bager et al. 2013b). It 
has been found that G. anatis strains can adhere to chicken 
epithelial cells in vitro and inert surfaces via their short 
fimbria-like structures (Vaca et al. 2011; Lucio et al. 2012).

Haemagglutinin

Some strains of Gallibacterium can agglutinate RBCS of avian 
and mammalian species (Zepeda et al. 2009; Ramirez-Apolinar 
et al. 2012). Though most strains of G. anatis can agglutinate 
rabbits’ RBCs, few strains may agglutinate the RBCs of chick-
ens and quails due to the expression of haemagglutinins or 
adhesins binding receptors on the cells’ surface (Bager et al. 
2013a; Johnson et al. 2013). Moreover, hemagglutinin protein 
was detected in biofilms and outer membrane vesicles (OMVs) 
liberated from G. anatis (Montes-Garcia et al. 2016).

Outer membrane vesicles

Proteins, lipopolysaccharides, and DNA are found in the 
budding regions of the outer cell membrane, OMVs, of 
several Gram-negative bacteria (Mashburn-Warren and 

Fig. 1  Virulence factors of G. 
anatis biovar haemolytica
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Whiteley 2006; Kulp and Kuehn 2010; MacDonald and 
Kuehn 2012). The enormous collection of core proteins 
found in the OMVs of G. anatis strains is mainly unaffected 
by the various in vitro growth conditions, but certain envi-
ronmental stimuli greatly influence their expression. They 
facilitate bacterial adhesion and colonization, the formation 
of biofilms, and the removal of several antibiotic compounds 
(Bager et al. 2013a). Additionally, G. anatis releases hemag-
glutinin in the OMVs to agglutinate avian RBCs (Zepeda 
et al. 2009; Bager et al. 2013a, 2014; Johnson et al. 2013) 
and trigger a robust immunological response (Pors et al. 
2016b).

Capsule

Bojesen et  al. (2007a) identified and characterized the 
genetic elements responsible for capsule biosynthesis in 
Gallibacterium for the first time. The capsule biosynthetic 
locus of Gallibacterium resembles the Escherichia coli (E. 
coli) group 2 capsule in structure and is considered a critical 
virulence factor for the pathogenesis of G. anatis infection. 
Some Gallibacterium strains have a polysaccharide capsule 
that adds virulence (Persson and Bojesen 2015). Capsule in 
G. anatis has an essential role in the adhesion and interaction 
of the bacterium with the surface of the host and immune 
evasion (Bojesen et al. 2011b; Singh et al. 2011; Harper 
et al. 2012). Although this capsule can be seen using elec-
tron microscopy (Bojesen et al. 2011c), it disappears follow-
ing sub-cultures (Kjos-Hansen 1950). A capsule-knockout 
mutant (ΔgexD) became more virulent than its wild-type 
equivalent (Bojesen et al. 2011c).

Biofilm formation

Biofilms mainly comprise proteins, polysaccharides, nucleic 
acids, and amyloid proteins (Costerton et al. 1999; Larsen 
et al. 2007; Lopez-Ochoa et al. 2017). Biofilm formation 
begins through the bacterium’s capacity to bind the cell’s 
inert surface. The adhesive capacity of G. anatis as a tool 
for colonization of tissue surfaces and for allowing infection 
to persist inside the host was studied by scanning electron 
microscopy, and the findings implied that all the used iso-
lates had formed robust biofilms on polystyrene and glass 
within the first 3 h of exposure (Vaca et al. 2011). Strains 
of G. anatis are classified into 3 categories: weak, moder-
ate, and strong groups according to the biofilm formation 
capability (Johnson et al. 2013). This may indicate that the 
development of biofilms is significant for particular bacterial 
clades. Additionally, the biofilm is crucial for the chronicity 
and duration of infections and for reducing their sensitivity 
to antibiotics (Costerton et al. 1999; Donlan and Coster-
ton 2002; Persson and Bojesen 2015). It has been found that 
proteins in biofilms are capable of interacting with several 

host proteins, including fibronectin, fibrinogen, laminin, and 
plasminogen, and consequently alter the host's homeostasis 
(Epstein and Chapman 2008; Lopez-Ochoa et al. 2017).

Metalloproteases

Metalloprotease enzymes are essential in G. anatis bac-
terium for proteolysis, increasing virulence, colonization, 
nutrient acquisition, and degradation of immunoglobulin 
(Ig) (G), along with bacterial invasion into the systemic cir-
culation (Garcia-Gomez et al. 2005; Chavez et al. 2017b). 
It was found that these enzymes can down-regulate the 
immune response by acting on antibodies and complement 
system (Miyoshi and Shinoda 2000) that helps in colony 
establishment and bacterial transmission to blood circula-
tion. In addition, proteases may be accountable for the host-
specific pathogenicity of G. anatis strains (Zepeda et al. 
2010). Metalloproteases such as metal-dependent endonu-
clease domain, zinc, and ATP-dependent metalloprotease 
are encoded in the G. anatis genome (Johnson et al. 2013).

Elongation factor Tu

Elongation factor Tu is a protein released through vesicle 
formation, possesses amyloid characters, and is conse-
quently included in the pathogenesis of G. anatis (Lopez-
Ochoa et al. 2017).

Clustered regularly interspaced short palindromic 
repeats (CRISPR)

According to Johnson et al. (2013), the bacterial innate 
defense system known as clustered regularly interspaced 
short palindromic repeats (CRISPR) breaks down invasive 
foreign and phage and plasmid nucleic acids. It can obstruct 
transformation, indicating that different strains of G. ana-
tis have different levels of innate ability (Kristensen et al. 
2012).

Integrative conjugative elements

Integrative conjugative elements have specific distinguish-
ing characteristics, such as a site-specific integrase, transfer 
genes, and genes that control excision and transfer. Genes 
encoded inside these elements have been used to identify 
them in the G. anatis genome (Wozniak et al. 2009; Johnson 
et al. 2013). They have genes for antibiotic resistance, which 
spreads resistance to other bacteria (Bojesen et al. 2011b).

Small colony variants

Small colony variants are detected in the cultures of G. 
anatis as they have hemolytic activity (Greenham and 
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Hill 1962). Moreover, they might aid in bacterial survival, 
recurrent infections, and the development of antibiotic resist-
ance (Proctor et al. 2006).

Other virulence genes

G. anatis pathogenicity has been linked to the genes cps16A, 
16B, and 16F that encode the enzymes glycosyltransferase, 
hyaluronidase, and UDP-glucose 6-dehydrogenase, respec-
tively (Bosse et al. 2017), through the cloning and charac-
terization of the gene encoding G. anatis fnrG (a homolog of 
the global regulator gene conferring a hemolytic phenotype 
in E. coli) and its function in the production of the E. coli 
silent hemolysin. Bojesen (2003) investigated the relation-
ship between G. anatis and E. coli. sheA was studied by cre-
ating an E. coli-sheA, a null mutant of the silent hemolysin, 
from a 4.2 kilobase pair hind segment harboring fnrG. The 
fact that fnrG activates sheA and produces a non-hemolytic 
transformant led him to conclude that fnrG is probably a 
member of the fnr global regulatory protein family.

Pathogenicity

The bacterium was isolated from apparent healthy chickens’ 
nasal and tracheal passages and cloaca as a part of their 
normal microbiome (Bojesen et al. 2003a). Several studies 
verified the existence of G. anatis as a key bacterial patho-
gen in both natural and experimental infections. The associa-
tion of G. anatis with septicemia, oophoritis, salpingitis, egg 
abnormalities, pericarditis, hepatitis, tracheitis, and elevated 
mortality in pullets signifies that at least some strains of 
Gallibacterium possess pathogenic possibility in chick-
ens (Bojesen et al. 2004; Neubauer et al. 2009; Jones et al. 
2013; Paudel et al. 2013, 2014a, b, 2015; Elbestawy 2014; 
Persson and Bojesen 2015). The differentiation between 
pathogenic and non-pathogenic isolates of G. anatis using 
embryo lethality assay failed to obtain any significant results 
because both G. anatis isolates from healthy and sick chick-
ens caused hemorrhagic lesions and death of embryos in 
70 to 100% of inoculated eggs (Trampel and Nalon, 2008).

The virulence of the G. anatis strain, the infection’s 
route, and the immune status and age of the host are fac-
tors that influence and exacerbate the pathogenicity of the 
bacterium in chickens (Bisgaard, 1977; Bojesen et al. 2004, 
2008). Concomitant infection with other viruses or bacte-
ria (Matthes et al. 1969; Shaw et al. 1990), malnutrition, 
hormonal disturbance (Kohlert 1968; Gerlach, 1977), and 
environmental stressors such as seasonal variations (Mirle 
et al. 1991), cold (Matthes and Loliger, 1976; Rzewuska 
et al. 2007), inadequate ventilation, and overcrowding, as 
well as poor biosecurity, increase the severity of G. anatis 

infection (Verbrugghe et al. 2012; Paudel et al. 2015, 2017a, 
b; Persson and Bojesen, 2015). For instance, a co-infection 
of G. anatis with E. coli, Avibacterium paragallinarum (A. 
paragallinarum), and Mycoplasma gallisepticum causes 
increased morbidity and mortality in chickens (Neubauer 
et al. 2009; Paudel et al. 2017a, b; Abd El-Hamid et al. 
2018). Furthermore, the systemic infection was worsened by 
a bacterial infection that included the infectious bronchitis 
virus (He-ping et al. 2012; Mataried, 2016).

Experimental infection of naturally immunocompro-
mised layer chickens with G. anatis led to 8–10% lowered 
egg production and a 73% mortality rate (Jordan et al. 2005; 
Shapiro et al. 2013). Infection of layer hens with G. anatis 
induced hemorrhagic oophoritis and rupture of ovarian fol-
licles (Neubauer et al. 2009; Jones et al. 2013; Paudel et al. 
2014a), while infection in cockerels resulted in epididymitis, 
decreased semen quality, decreased sperm density, altered 
overall motility, and loss of membrane integrity (Paudel 
et al. 2014b). The disease affects broiler chickens on a sys-
temic level (Zepeda et al. 2010; Paudel et al. 2013; Zhang 
et al. 2019). Generally, G. anatis biovar hemolytica caused 
septicemia, oophoritis, salpingitis, peritonitis, liver necro-
sis, perihepatitis, pericarditis, airsacculitis, tracheitis, and 
enteritis in infected chickens (Bojesen et al. 2004, 2007a; 
Neubauer et al. 2009; Paudel et al. 2013).

Despite the previous pathological findings of G. anatis, 
it was found that this pathogen may colonize the upper res-
piratory and reproductive tracts without initiating substan-
tial signs or lesions (Paudel et al. 2013, 2014a, b). Many 
virulence factors enable G. anatis to invade, adhere, and 
colonize the host’s surface epithelium. After oropharyn-
geal and oviduct epithelial cells infection with G. anatis, 
the pathogen adheres firmly via the reaction between the 
adhesin and the host’s cell surface receptor, followed by 
rampant multiplication, colonization, and syntheses of viru-
lence factors (Vaca et al. 2011; Lucio et al. 2012; Bager et al. 
2013a,b). G. anatis F149T can express fimbriae responsible 
for mucosal attachment and colonization to the epithelium 
of the oropharynx (Lucio et al. 2012). The in vitro study of 
Zhang et al. (2017) showed that higher adhesion to primary 
chicken oviduct epithelial cells and increased generation of 
inflammatory cytokines have been observed in the highly 
pathogenic strains of G. anatis [IL-6, TNF-α, and interferon 
(IFN-c)], resulting in inflammation and tissue injury. Many 
other specific virulence factors can influence the pathogenic-
ity of G. anatis, such as IgG-degrading proteases, biofilm, 
hemagglutinin, fimbriae, capsule, GtxA, OMVs, metallopro-
teases, elongation factor Tu, and clustered regulatory short 
palindromic repeats (Bojesen et al. 2004; Garcia-Gomez 
et al. 2005; Christensen et al. 2007b; Zepeda et al. 2009; 
Kristensen et al. 2010; Lopez-Ochoa et al. 2017).

The primary target for G. anatis colonization is the res-
piratory tract, where the bacterium persists for 4 weeks pi, 
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then spreads to the reproductive organs such as ovaries, 
oviducts, or even testicles, causing drop in egg production, 
inflammatory lesions, and mortality, and these pictures sup-
port the claim for its systemic infection (Shaw et al. 1990; 
Neubauer et al. 2009; Paudel et al. 2013; Abd El-Hamid 
et al. 2016). Systemic infection with G. anatis may occur, 
resulting in septicemia, which sets off an inflammatory cas-
cade in several organs that causes inflammation of the upper 
respiratory tract, oophoritis, follicular hemorrhage, rupture, 
and degeneration, salpingitis, peritonitis, pericarditis, and 
perihepatitis (Harbourne, 1962; Kohlert, 1968; Janetschke 
and Risk, 1970; Hacking and Pettit 1974; Bisgaard, 1977; 
Gerlach 1977; Addo and Mohan, 1985; Majid et al. 1986; 
Shaw et al. 1990; Mirle et al. 1991; Suzuki et al. 1996; Neu-
bauer et al. 2009).

Three G. anatis isolates from Mexico, China, and Aus-
tria were evaluated for their differences in pathogenicity 
in a specific pathogen-free Lohmann layer chicken popu-
lation collected from various geographic locations. The 
results indicated that the Mexican isolate had a slightly 
higher pathogenicity than the two other strains, suggest-
ing a geographical pathogenicity difference (Paudel et al. 
2013). Regarding the genetic variety of isolates of G. ana-
tis, Bojesen et al. (2003b) obtained 114 G. anatis isolates 
from tracheal and cloacal swab samples of organic flocks, 
egg-producing flocks, and layer parent chicken flocks. The 
findings showed higher genetic similarity (more than 94%) 
in the organic flock isolates. On the contrary, the layer par-
ent flock isolates were divided into two subclusters contain-
ing each tracheal or cloacal isolated, with similarity above 
90%. This genetic diversity, indicating clonal lineages, may 
have altered to several spots inside the same bird, granting 
them additional capability to initiate a disease (Bojesen and 
Shivaprasad 2007; Johnson et al. 2008).

Clinical manifestations

Infection with G. anatis is associated with multiple and vari-
able clinical pictures but is often non-specific. In broilers, 
the pathogen causes respiratory manifestations in the form 
of nasal discharge, swelling and shaking of the head, cough, 
rales, dyspnea, diarrhea, and emaciation (Bojesen et al. 2008; 
El-Adawy et al. 2018; Elbestawy et al. 2018). In addition, 
G. anatis infection may induce a 3–18% reduction in egg 
production in layers (Jones et al. 2013), while in breeders, it 
causes an increasing mortality rate of 0.06–4.9% (Elbestawy 
et al. 2018). Mixed respiratory and reproductive disorders 
could be noticed in layers and breeder chicken flocks (Ataei 
et al. 2017; Chavez et al. 2017a; Abd El-Hamid et al. 2018). 
Elewa (2021) diagnosed G. anatis in layer chickens suffer-
ing from sneezing, rales, gasping, coughing, head swelling, 
and a 5–10% drop in egg production. Moreover, Bojesen 

et al. (2004) investigated the pathology of G. anatis virulent 
strain 12656–12 by intravenous or intraperitoneal inocula-
tion in normal or immunosuppressed commercial brown 
laying chickens aged 15 weeks old. The author found that 
intravenously infected birds had severe septicemic lesions 
in both the normal and immunosuppressed birds. Mortality 
(73%) was recorded with severe depression and reluctance 
to move chickens. While Hui-min et al. (2009) reported the 
relationship between G. anatis and layer oviduct cysts, they 
did not indicate whether these lesions were co-associated 
with other viral diseases such as infectious bronchitis and 
low pathogenic avian influenza (LPAI-H9N2) or not. The 
clinical signs and gross lesions of 42 naturally infected lay-
ers with G. anatis were observed and recorded. Furthermore, 
a combined infection among G. anatis and other pathogens 
was also investigated. Hyperemia, swelling, and epithelium 
cell degeneration or necrosis were found in the mucosa of 
the respiratory tract and mucosa of the oviduct that pre-
sented many neutrophilic granulocytes and ovarian cysts. 
Most importantly, the severity of the clinical manifestations 
induced by G. anatis is exaggerated by co-infection with 
other pathogens, such as A. paragallinarum in chickens. 
Paudel et al. (2017a) observed that chickens infected with 
both G. anatis and A. paragallinarum had more severe nasal 
secretions and swelling of infraorbital sinuses than those 
with a single infection. In addition, in the presence of E. coli 
infection, G. anatis caused higher egg embryonic mortality 
than eggs with a single infection (Wang et al. 2018).

Under experimental infection conditions, G. anatis 
induced typical respiratory signs and weight losses in broiler 
chickens (Abd El-Hamid et al. 2018). However, layer chick-
ens exhibited whitish diarrhea with a 66 to 47% drop in 
egg production (Paudel et al. 2014a). Specific pathogen-free 
cockerels showed no signs following experimental infection 
with G. anatis, but there was an alteration in the semen qual-
ity (Paudel et al. 2014b). Intranasal inoculation of G anatis 
showed an extensive and regular bacterial distribution in the 
respiratory and reproductive tract till 28 days pi (dpi) vs. 
one dpi in intravenously inoculated birds (Jones et al. 2013; 
Paudel et al. 2013).

Post‑mortem lesions

The post-mortem lesions of G. anatis are represented in 
Fig. 2. Respiratory, reproductive, intestinal, and septice-
mic lesions could be observed in infected cases with G. 
anatis (Ataei et al. 2019). Degeneration of the ovarian 
follicles, salpingitis, peritonitis, enteritis, and respiratory 
tract lesions have been associated with G. anatis infec-
tion (Bojesen et al. 2004). Furthermore, other G. anatis 
can induce other lesions in joints, heart, wattles, abdo-
men, and brain (El-Adawy et al. 2018). In the research of 
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Neubauer et al. (2009), hemorrhagic oophoritis, damaged 
or malformed follicles, ovarian regression, hemorrhagic 
or dysfunctional oviducts, peritonitis, fibrinous perihepa-
titis, and pericarditis were all lesions of G. anatis infection 
in layer hens. Elewa (2021) demonstrated mild tracheitis, 
peritonitis, oophoritis, and salpingitis in layers with G. 
anatis infection.

Following experimental induction with G. anatis, layer 
chickens exhibited variable gross lesions such as hemor-
rhagic or ruptured ovarian follicles, pericarditis, multifo-
cal hepatic necrosis, egg deformities in the oviduct, and 
fibrinous peritonitis (Paudel et al. 2014a). It has been noted 
that G. anatis biovar 3 caused purulent oophoritis, swol-
len blood vessels in the ovary, oviduct, and peritoneum, as 
well as purulent or fibrinous exudates in the peritoneum. 
Further experimental studies of G. anatis in chickens rep-
resented regression and deformity of ovaries, focal or dif-
fuse salpingitis, catarrhal to purulent tracheitis, conges-
tion of lungs, air sacculitis, pericarditis, liver congestion, 
and ascites (Paudel et al. 2013; Pors et al. 2016a; Abd El-
Hamid et al. 2018).

G. anatis biovar haemolytica had been isolated from 
the nasal sinuses of infected cases with a nephropatho-
genic strain of infectious bronchitis and had respiratory 
signs (Franca et al. 2011). As they cause more severe 
peritonitis, salpingitis, and oophoritis, concurrent E. 
coli and G. anatis infections might worsen lesions com-
pared to a single infection (Pors and Bojesen  2011). 
Besides, another study confirmed the localization 

of Gallibacterium mainly in the trachea and ovaries 
(Huangfu et al. 2012). G. anatis was isolated at a meager 
rate (2.7%) from pododermatitis cases in numerous layer 
flocks in Denmark in 2015 (Olsena et al. 2018).

Diagnosis

The different diagnostic tools of G. anatis are shown in 
Fig. 3.

Isolation and phenotypic identification

The absence of pathognomonic respiratory and reproductive 
signs and lesions caused by G. anatis necessitates a specific 
diagnosis to confirm the infection. Isolation and phenotypic 
identification of G. anatis are the basis for diagnosing G. 
anatis infections in almost all cases (Christensen et al. 2003). 
However, overgrowth by other bacteria, mainly E. coli, sig-
nificantly hinders the isolation process (Wang et al. 2016). 
Furthermore, phenotypic characterization techniques can 
produce heterogeneous, time- and labor-intensive findings. 
Consequently, molecular diagnostic methods that depend on 
identifying 16S–23S rRNA sequences are growing (Bojesen 
et al. 2007b; Alispahic et al. 2012; Huangfu et al. 2012).

Species of Gallibacterium are usually grown at 37°C 
for 24–48 h on blood agar medium (with 5–10% citrated 
bovine blood) under facultative anaerobic/microaerophilic 

Fig. 2  Characteristic signs and lesions of G. anatis infection
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conditions (Christensen et al. 2003). Most G. anatis isolates 
produce a wide β-hemolytic zone with butyrous, circular, 
smooth, greyish, non-pigmented, and shiny colonies (El-
Adawy et al. 2018). After 24–48 h of incubation, G. anatis 
develops with a modest granular deposit and weak turbid-
ity in a nutrient broth supplemented with 5% horse serum 
and 3% glucose. Better bacterial growth is observed in brain 
heart infusion broth when 5% horse serum is added.

Biochemically, several tests are used to identify G. ana-
tis, as detailed in Table 2 (Christensen et al. 2003; Bisgaard 
et al. 2009).

Other automated identification methods like VITEK2, 
Phoenix100, and MALDI-TOF–MS could be used for Galli-
bacterium identification (Alispahic et al. 2012; Allahghadry 
et al. 2021).

Matrix‑assisted laser desorption/ionization 
time‑of‑flight mass spectrometry (MALDI‑TOF–MS)

MALDI-TOF–MS is an effective technique for identifying 
G. anatis biomarkers (El-Adawy et al. 2018). This test has 
an impressive prospective for a routine laboratory diagnosis 
of the bacteria as it is rapid, can proceed with many samples 

concurrently, and needs small sample sizes. This test identi-
fied one clonal lineage of G. anatis in various flocks (Alispa-
hic et al. 2011, 2012; Allahghadry et al. 2021). The genetic 
diversity of Gallibacterium isolated from 13 farms with vari-
ous biosecurity measures and management techniques was 
examined using phylogenetic analysis of incomplete rpoB 
sequences and biotyping using MALDI-TOF–MS. The find-
ings showed significant variability among isolates from farms 
with poor biosecurity standards and those with greater bios-
ecurity standards (more closely linked and grouped). Low 
biosecurity standards allow viruses to spread horizontally, 
and gene transfer creates genetic diversity (Lozica et al. 2020).

Molecular detection

Molecular diagnosis of G. anatis has been recently devel-
oped, being fast, easy, highly specific, sensitive, and reliable 
(Ataei et al. 2017). Molecular assays such as polymerase 
chain reaction (PCR) are confirmatory to both phenotypi-
cally detected G. anatis strains and the negative samples fol-
lowing initial isolation (Bisgaard et al. 2009; Elewa 2021). 
Primers, including 16S to 23S rRNA internal transcribed 

Fig. 3  Different diagnostic tools of G. anatis
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Table 2  Phenotypic and biochemical reactions for the identification of G. anatis biotypes

ONPG β-galactosidase, ONPG β-Glucosidase
Characteristics are scored as: + , all strains positive within 1–2 days; ( +), all strains positive within 14 days; − , all strains negative after 14 days; 
W, weakly positive; D, some strains positive, while others are negative (number of strains positive/number of strains tested)
(Christensen et al. 2003; Bisgaard et al. 2009)

G. anatis 
biovar hemo-
lytica

G. anatis 
biovar 
anatis

G. melopsittaci G. treha-
losifermen-
tans

G. salpingitidis G. geno-
mospe-
cies 1

G. geno-
mospe-
cies 2

G. geno-
mospe-
cies 3

Gallibacte-
rium group 
V

Gram stain - - - - - - - - -
Motility - - - - - - - - -
β-hemolysis  + - - - - - - - -
Growth on Mac-

Conkey’s
-/D -  + W -  + - - D  + 

Catalase  +  + D D  + D D D  + 
Oxidase  +  + D D  + D D D  + 
ONPG  +  +  + -  +  +  +  +  + 
PNPG  +  + -  + - - - - -
Phosphatase  +  +  +  +  +  +  +  +  + 
Nitrate reduction  +  +  +  +  +  +  +  +  + 
Indole - - - - - - - D -
Urease - - - - D - - D  + 
Voges-Proskauer - - - - - - - - -
Methyl Red - - - - - D - - -
H2S - - - - - - - - -
Citrate (Simmons) - - - - - - - - -
Sucrose  +  +  +  +  +  +  +  +  + 
Maltose  + D  +  +  +  +  +  +  + 
Ornithine decar-

boxylase
-  + - - - - - - -

D-Arabinose  + - D D ( +)  + D D ( +)
L-Arabinose - - D -  + - - D -
D-Arabitol - - - -  +  +  + D  + 
Xylitol - - - -  + W - - - -
Glycerol  +  + ( +) D ( +)  +  + D ( +)
Mucate - - D -  + - - D  + 
Lactose - D  + /( +) - ( +) - - D  + 
D-Glucose  +  +  +  +  +  +  +  +  + 
D-Ribose  +  +  + /( +)  + /( +)  +  +  + D  + 
D-Sorbitol D D D  + D - - D  + 
Trehalose D  + -  + -  + D - -
Raffinose  +  +  +  +  + /( +)  +  + D  + 
Fructose  + -  +  +  +  +  +  +  + 
L-Fucose  + - D  + /( +)  +  + /( +) D D  + 
D-Melibiose - -  + /( +)  + /( +) D - - -  + 
D-Mannitol  +  +  +  +  + D D D D
D-Mannose  +  +  +  +  +  +  +  +  + 
D-Xylose  +  + D  +  +  +  +  + /( +) -
m-Inositol D D - - - - D - -
Dextrin D - - - - ( +)  + - -
Dulcitol - - D D  +  +  + D -
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spacer sequence, are specific to Gallibacterium (Bojesen 
et al. 2007a) and used for its differentiation from other 
Pasteurellaceae generas (Christensen et al. 2003). In addi-
tion, the primer 1133fgal is specific for Gallibacterium, 
not for other members of Pasteurellaceae. The 23S rRNA 
gene sequence primer 114r is utilized as a reverse primer 
(Lane 1991). Three specific amplicons of around 789, 985, 
and 1032 base pair can be identified in G. anatis infection 
(Neubauer et al. 2009; Singh, 2016; Singh et al. 2016; Ataei 
et al. 2017; Wang et al. 2018).

When phenotypic identification of Gallibacterium is chal-
lenging, classification based on the gene sequence of the 
DNA-dependent RNA-polymerase (rpoB) subunit might be 
utilized (Korczak et al. 2004; Christensen et al. 2007b). The 
gtxA-encoding gene, the fimbrial gene, and the gyrase subu-
nit B gene may all be found using the PCR approach (Sorour 
et al. 2015; Krishnegowda et al. 2020).

Real-time quantitative PCR (qPCR) is used as a species-
specific identification and quantifying method for G. anatis 
(Huangfu et al. 2012; Wang et al. 2016, 2018). The protein 
gyrase subunit B gene is essential for the function of the 
DNA replication enzyme because it encodes the ATPase 
domain of this enzyme. The qPCR is more rapid, highly 
specific, sensitive, reproducible, and cost-effective, and it 
needs a lower DNA concentration than conventional PCR 
or phenotypic characterization methods (Wang et al. 2016; 
Huangfu et al. 2012).

Real-time loop-mediated isothermal amplification PCR 
assay has recently been used to detect G. anatis. This assay 
targets the sodA gene. It has been described as sensitive, 
rapid, and specific for G. anatis identification. Moreover, 
it is quicker and cheaper than quantitative PCR (Stępień-
Pyśniak et al. 2018).

Genotypic characterization methods of G. anatis have 
been used, such as DNA–DNA hybridization, pulsed-field 
gel electrophoresis, amplified fragment length polymor-
phism, and sequencing genes like infB, recN, and rpoB 
(Christensen et al. 2003; Bisgaard et al. 2009). Moreover, 
Allahghadry et al. (2021) detected 84 (70%) of G. anatis out 
of 120 layers and broiler chicken tracheal samples, and after 
genotyping by pulsed-field gel electrophoresis and genome 
sequencing revealed a total of 24 pulsotypes for 71 G. anatis 
strains (87% similarity level) and 7 genome clusters includ-
ing 21 strains (97% similarity level), respectively.

Other diagnostic techniques

Agar gel precipitation test

Galaz-Luna et al. (2009) used an agar gel precipitation 
test for serotyping and cross-reactivity and found no rela-
tionship between biovar and serovar among the species of 
Gallibacterium.

Enzyme‑linked immunosorbent assay

Serological testing is helpful for flock monitoring or diag-
nosing Gallibacterium infection. Wang (2012) developed 
an indirect enzyme-linked immunosorbent assay (ELISA) 
to recognize all antibodies against G. anatis in chickens. 
The response curve was established when the optical den-
sity 450 nm values varied along with the time. The anti-
body level peaked in 2-month pi, but for a short period, and 
then gradually dropped. Nowadays, ovotransferrin can be 
detected in chicken serum using ELISA as an acute phase 
protein marker in experimental G. anatis infections (Roy 
et al. 2014). Acute-phase proteins are good markers for diag-
nosis and prognosis.

Haemagglutination test

As G. anatis is a haemagglutinating bacterium for avian 
and mammalian RBCs [chickens, turkeys, pigeons, quails, 
ducks, Harris’s hawks (Parabuteo unicinctus), house finches 
(Carpodacus mexicanus), cows, sheep, horses, dogs, rabbits, 
pigs, and humans (groups A, B, AB, and O; Rh +)]; thus, 
haemagglutination test is used for the rapid detection of the 
organism using microdilution method or microtiter plates 
(Zepeda et al. 2009; Montes-Garcia et al. 2016).

Hemolysis and cytotoxicity assay

The hemolysis assay of G. anatis can be adopted using 
washed bovine blood RBCs and detected using ELISA, 
while the cytotoxicity assay can be applied on HD11 cells 
in 96-well tissue culture plates (Kristensen et al. 2010). The 
GtxA is the cause of cytotoxicity and hemolysis (Kristensen 
et al. 2011).

Immunofluorescence microscopy

The culture of G. anatis is fixed with paraformaldehyde on 
glass slides and labeled with anti-fimbriae immune serum. 
The conjugated goat anti-rabbit secondary antibodies are 
added, the slides are mounted, and the images are captured 
using laser scanning microscopy (Bager et al. 2013b).

In situ hybridization

The 16S rRNA of Gallibacterium is the target of an in situ 
hybridization probe dyed cyanine. The pathogenic changes 
in the spleen and liver tissues of experimentally infected 
hens have been studied using this hybridization approach 
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(Bojesen et al. 2003a, 2004). This technique is vital for the 
detection of G. anatis pathogenies and dissemination.

Immuno‑gold electron microscopy

This method is processed as an immunofluorescence assay, 
but the secondary antibodies are gold particles on nickel 
grids coated with Formvar carbon (Bager et al. 2013b). Elec-
tron microscopy is used for the detection of G. anatis.

Histopathology and immunohistochemistry

Several studies reported the histopathological examinations. 
Following the intravenous or intraperitoneal inoculation of 
virulent G. anatis strains in normal or immunosuppressed 
15-weeks-old brown laying chickens, the liver lesions in the 
intravenously infected birds included basophilic aggregates 
(Gallibacterium microcolonies) bordered by necrotic hepat-
ocytes, non-identifiable necrotic cells, proteinaceous fluid, 
and eosinophilic and basophilic aggregates in the ellipsoids 
in the spleens. After 12 and 24 h pi, the histopathological 
changes included forming multinucleated giant cells around 
some of the ellipsoid lesions in the spleen and liver. At the 
same time, the intraperitoneally infected chickens with a nor-
mal immune status showed diffuse purulent peritonitis and 
fibrinous perihepatitis 12 h pi (Bojesen et al. 2004; Zepeda 
et al. 2010). A combined infection of G. anatis and other 
pathogens was studied, and the results indicated changes in 
the lung, trachea, oviduct, and ovary regarding hyperemia, 
swelling, epithelium cell degeneration, and necrosis in the 
mucosa of the respiratory tract. The mucosa of the oviduct 
presented several neutrophilic granulocytes and ovarian cysts 
(Hui-min et al. 2009). The different histopathological severity 
degrees were due to the differences in virulence among the 
used G. anatis biovar hemolytica in chickens (Zepeda et al. 
2010; Abd El-Hamid et al. 2016; Mataried 2016).

Immunochemistry was used to detect the ability of G. 
anatis isolates to adhere to or invade the chicken oviduct 
epithelial cells using polyclonal antibodies. The results of 
this assay revealed that G. anatis could attach epithelial cells 
without invasion (Zhang et al. 2017).

Prevention and control strategies

Adopting effective biosecurity measures, “all in-all out,” 
in poultry farms prevents the horizontal transmission of G. 
anatis, the gene transfer, and consequently, the heterogene-
ity or the diversity of this pathogen (Lozica et al. 2020). 
Treatment of a mixed infection with other bacteria using 
a specific drug, controlling of other immunosuppressive 
agents, and amelioration of stress conditions are the must 

to prevent or control G. anatis infection (Mataried 2016; 
Paudel et al. 2017a, b; Abd El-Hamid et al. 2018). Eggs 
or hatchery cleanliness is crucial to prevent trans-eggshell 
transmission caused by fecal contamination with G. anatis 
(Wang et al. 2018).

Antibiotic treatment

The administration of effective antimicrobials is needed to 
treat G. anatis infections. As of now, the antigenic diversity 
among G. anatis strains and MDR causes treatment fail-
ure and hinders vaccination-based prophylaxis (Bojesen 
et al. 2003b, 2007c; Christensen et al. 2003; Bojesen et al. 
2011a, b; Johnson et al. 2013; Jones et al. 2013; Chavez et al. 
2017b; Hess et al. 2019). In this regard, Elbestawy (2014) 
detected absolute resistance of 20 isolates of G. anatis to 
oxytetracycline and lincospectin and owed this resistance 
to the extensive exposure of layer chicken flocks in Egypt 
to long courses of these antibiotics in feed as a rational pro-
phylactic program. A similar resistant pattern was obtained 
in Morocco by Nassik et al. (2019), who found that all G. 
anatis strains were resistant to ampicillin, erythromycin, 
oxytetracycline, and sulfamethoxazole-trimethoprim.

Besides, Bojesen et al. (2011b) reported that field strains 
of G. anatis were resistant to sulfamethoxazole and tetra-
cycline at rates of 97% and 92%, respectively, while refer-
ence strains were resistant to the previous antimicrobials 
at rates of 42% and 67%, respectively. Alarmingly, MDR 
has markedly increased worldwide in the last decade, which 
is deemed a public health threat. Numerous recent epide-
miological studies established the occurrence of extensive 
drug resistance and MDR bacterial pathogens from distinct 
origins, including humans, fish, food products, and poultry 
(Abd El-Ghany, 2021; Algammal et al. 2021b, c; Hetta et al. 
2021; Algammal et al. 2022b).

The antimicrobial resistance (AMR) of G. anatis strains 
isolated from chickens in different localities were studied 
using PCR and cloning and sequencing of plasmid-medi-
ated resistant gene of streptomycin, sulfamethoxazole, and 
fluoroquinolones (Bojesen et al. 2011a, b; Guo, 2011; Gao, 
2012; Monita et al. 2011). The antimicrobial susceptibility 
for 84 chicken isolates of G. anatis from broiler and breeder 
flocks was studied in the USA compared to P. multocida iso-
lates. Amoxicillin, neomycin, and sulfonamide-trimethoprim 
resistance levels were superior in G. anatis than in P. mul-
tocida (Jones et al. 2013). Resistance to tetracycline could 
be due to the genes tetB, tetH, and tetL, which have been 
detected in strains of G. anatis (Abd El Tawab et al. 2018).

El-Adawy et al. (2018) reported that 93% of the field G. 
anatis strains were resistant to sulfamethoxine, 93% to spec-
tinomycin, 87% to tylosin, and 80% to oxytetracycline, but 
they were sensitive to apramycin, florfenicol, and neomycin. 
Chavez et al. (2017b) found resistance of G. anatis isolates 
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to penicillin, tylosin, lincomycin, ampicillin, enrofloxacin, 
oxytetracycline, norfloxacin, and cephalexin, but sensitivity 
to ceftiofur (73%) and florfenicol (68%). Moreover, Elbestawy 
et al. (2018) revealed antibiotic sensitivity differences among 
G. anatis isolates obtained during 2013 and 2015. The highest 
antibiotic sensitivity results for 2013 G. anatis isolates were to 
florfenicol, ciprofloxacin, and norfloxacin, respectively, while 
those isolates of 2015 were susceptible to cefotaxime, followed 
by florfenicol, norfloxacin, and ciprofloxacin. In Nigeria, the 
sensitivity of non-hemolytic and hemolytic biovars of G. anatis 
isolated from Muscovy ducks was high to cefotaxime, cipro-
floxacin, doxycycline, and florfenicol (Lawal et al. 2017). In 
layer flocks, 96% of G. anatis isolates showed MDR to tylosin 
(95%), tetracycline (89%), nalidixic acid or sulfamethoxazole 
(77%), and enrofloxacin (58%) (Hess et al. 2019).

In Egypt, a recent study by Elewa (2021) showed that all 
the isolated layer strains of G. anatis were resistant to kana-
mycin and neomycin (98%), penicillin and ampicillin (96%), 
oxytetracycline (95%), and sulfamethoxazole-trimethoprim 
and norfloxacin (27.5%), but susceptible to erythromycin 
and azithromycin (96%), florfenicol (90%), sulphamethax-
ole trimethoprim (57.3%), and norfloxacin (44%). Another 
recent Romanian study revealed that all G. anatis strains 
showed a resistant profile to tetracyclines, fluoroquinolo-
nes, ampicillin, trimethoprim, nalidixic acid, and clindamy-
cin (Sorescu et al. 2021). Furthermore, Allahghadry et al. 
(2021) showed a lower sensitivity of 2 G. anatis strains to 
tetracycline (76.2%) and enrofloxacin (90.5%), suggesting 
the widespread occurrence of MDR G. anatis isolates and 
announced calls for non-antibiotic prophylactics.

Owing to the emergence of widespread MDR strains of 
G. anatis, traditional antimicrobials are not suggested for 
treating G. anatis infection. In the study by Prasai et al. 
(2017), feed supplementation with zeolites (aluminosili-
cate minerals) showed an effective reduction of G. anatis 
in chickens. In addition, Zhang et al. (2019) reported that 
specific chicken egg yolk IgY produced against recombinant 
N-terminal of GtxA revealed significant protection against 
G. anatis infection and decreased the severity of the lesion 
in the liver and intestine. Moreover, a recent study by Zhang 
et al. (2021) showed that a strain of Leuconostoc mesenter-
oides (QZ1178) exerts potential in vitro antibacterial effects 
against G. anatis through lactic acid formation.

Vaccines

Prior to now, the effectiveness of conventional vaccinations 
in protection against G. anatis infection was limited due 
to the antigenic diversity reported by Krishnegowda et al. 
(2020). A bacterin including 3 different biovars accounting 
for 95% of the outbreaks in Mexico has been developed by 
Boehringer Ingelheim, Mexico. The serological response 

was monitored from week 9 to week 40 using a custom-
made ELISA test for G. anatis. The results indicated that 
the birds vaccinated with G. anatis bacterin were high in 
antibody titers and egg production (Gonzalez et al. 2003; 
Vazquez et al. 2003). The prepared autogenous bacterin 
was very effective in protecting against clinical disease and 
decreasing egg production and performance in layers (Cas-
tellanos et al. 2007) and in broiler breeder flocks (Calderon 
and Thomas 2009).

The vaccination potential of many immunogenic antigens 
such as GtxA, OMVs, fimbriae, capsules, elongation factor 
Tu, CRISPR, and recombinant proteins (GtxA and fimbriae) 
has been studied (Bager et al. 2013a, 2014; Pedersen et al. 
2015; Pors et al. 2016a, b). Moreover, the efficacy of various 
immunogenic proteins such as GtxA, fimbriae, Gab_1309, 
and Gab_2348 for epitope recognition and prediction was 
investigated. The results revealed that these immunogenic 
proteins could stimulate the immune response (Ataei et al. 
2019). Vaccination of layer chickens with OMVs of G. ana-
tis decreased the severity of lesions and increased the serum 
titers of specific immunoglobulin (Y) (Pors et al. 2016b). 
Immunization with OMVs and the fimbrial protein of G. 
anatis could protect against the disease (Persson et al. 2018). 
A killed bivalent commercial vaccine (bacterin), includ-
ing A. paragallinarum and G. anatis antigens, can induce 
complete protection in immunized chickens (Paudel et al. 
2017a,b). Finally, Allahghadry et al. (2021) detected three 
major immunogen genes, gtxA, Gab_1309, and Gab_2312, 
in the examined G. anatis isolates, which possibly exemplify 
efficient vaccine targets, and the authors suggested the use 
of the gtxA gene (the most conserved sequence in all G. 
anatis strains) for the future vaccine development purposes 
(recombinant vaccines).

In conclusion, periodic studies regarding Gallibacterium 
infections should be applied to control their economic losses 
and improve poultry production. These studies should inves-
tigate the current epidemiological situation of the disease 
in the locality, the sources of infection in terms of public 
health, the antibiogram profile of the isolated strains, and 
the development of future vaccines. In addition, it is crucial 
to discuss the precise biology and pathophysiology of Gal-
libacterium infection and how this bacterium switches from 
being a normal inhabitant flora to a pathogen producing a 
disease condition in the host.
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