Guidelines for the Assignments Reports

The report should contain the following:

- 1. The program code used to calculate the requirements.
- 2. The output values (figures) required with proper heading and axes titles.
- 3. Comments on the outputs.

The report should be sent by email to tamer.m.abdo@gmail.com as a pdf file.

The file name should be as follows: **studentname_assig1.pdf**

EECE Program
EPM332: Electrical Machines
Computer Assignment #1

For a 75-kVA, 60-Hz, 4600/240 V distribution transformer whose resistances and leakage reactances are (in ohms):

 $R_1 = 0.846$, $R_2 = 0.00261$, $X_1 = 26.8$, $X_2 = 0.0745$, $R_c = 220000$, $X_{\mu} = 112000$ Write a computer program to perfrom the following:

For LV side operating at 240 V:

- a. Plot the HV side terminal voltage as a function of the power factor angle at full-load as the load power factor varies from 0.6 pf leading through unity pf to 0.6 pf lagging.
- b. Plot the effeciency and regulation for the same pf range at full-load, half-load and quarter-load conditions.

If the HV transformer tappings is limited to $\pm 5\%$, comment on the results above.

EECE Program EPM332: Electrical Machines Computer Assignment #2

Write a computer program to analyze the performance of a three-phase induction motor operating at its rated frequency and voltage. The inputs should be the rated motor voltage, power and frequency, the number of poles, the equivalent-circuit parameters, and the rotational loss. The program should plot the motor supply current, the output power, the input power and power factor and the motor efficiency against a range of slip staring from s=1 to s=0. Also plot the same parameters against the motor speed.

Exercise your program on a 500-kW, 4160 V, three-phase, 60-Hz, four-pole induction motor whose rated speed rotational loss is 3.5 kW and whose equivalent-circuit parameters are:

 $R_1 = 0.521$

 R_2 '=1.32

 $X_1 = 4.98$

 X_2 '=5.32

 $X_{m} = 136$

For a 100-hp, 3-phase, Y-connected, 440-V, 50-Hz, 8-pole squirrel cage induction motor with no-load rotational loss of 2.7 kW and has the following equivalent-circuit constants all expressed in ohms/phase referred to the stator:

$$R_1 = 0.085 \Omega$$
 $R_2' = 0.067 \Omega$ $X_1 = 0.196 \Omega$ $X_2' = 0.161 \Omega$ $X_{\mu} = 6.65 \Omega$

Write a program to draw the **torque-speed** characteristics for a slip range from 2 to -1 at:

- a) Rated conditions.
- b) $V = 0.8, 0.6 V_{rated}, 0.4 V_{rated}$ and $0.2 V_{rated}$.
- c) f = 15 Hz, 25 Hz, 50 Hz, and 65 Hz.
- d) V/f operation for f = 10 Hz, 30 Hz, 50 Hz, and 60 Hz.
- e) $R_2'=2R_2'$, $R_2'=3R_2'$, $R_2'=4R_2'$ and $R_2'=5R_2'$.
- f) $R_1=2R_1$, $R_1=3R_1$ and $R_1=4R_1$.

For all the above curves, determine the **operating points** if the motor is required to drive a load of 400 N.m.