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ABSTRACT 

Numerical wave tanks are very efficient tools for coastal engineering design. They can 

provide relatively accurate predictions for various phenomena including wave generation, 

propagation, and interaction with structures. The two main difficulties that are faced upon 

developing this type of models are modeling strong free surface deformation, and modeling 

convection dominated viscous flow. The algorithms suggested for treating these two 

difficulties suffer from inaccurate simplifications, or adopting rather arduous methodologies. 

A possible methodology to circumvent this difficulty is developing a model based on 

relatively accurate discretization methods.  

In the present work CIP, CIP-CSL3 and WENO5 accurate methods are tested and 

compared with the aim of providing the optimum performance taking the two mentioned 

difficulties into account. It is found that the model adopting WENO5 method for both the free 

surface capturing algorithm, and discretization of the flow convection terms yields the most 

accurate and stable results among other efficient options. 

This model is extensively validated by simulation of wave propagation over arbitrary 

shaped bodies. The model provides accurate results using relatively coarse and simple grids. 

Also turbulent flow is simulated without using an explicit turbulence model. The results of the 

flow field in both the water and the air phases are validated via comparison with the analytical 

formulas for internal wave. The results of the free surface location predicted by the relatively 

simple level set method are shown to be as accurate as those obtained using VOF method. 

The model is applied to model wave propagation over semicircular structures. Various 

aspects of the problems are investigated numerically and experimentally. It is illustrated that 

the wave force in the wave propagation direction is considerably less than the wave force in 

the opposite direction. Also the model is applied to study generation and propagation of 

tsunami waves generated by a solid landslide. The numerical results of this relatively 

complicated problem agree well with the experimental measurements. 

The most important contribution of this work is the ability of modeling various complex 

phenomena accurately using a rather simple methodology. 
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1 INTRODUCTION  

1.1 Background and Motivation 

1.1.1 Role of models in coastal management and design 

Since about 38 percent of the worldôs population live within 50 km of the coast, 

coastlines are the worldôs most important and intensely used of all areas settled by humans 

(Kay and Alder 2005). This fact directs special attention to coastal management which is a 

multidisciplinary field that includes environmental, social and political aspects (Kamphuis 

2000). Coastal engineering design is an important topic in this field whose aim is providing 

the best product taking various requirements into consideration. 

Kamphuis (2000) classified coastal engineering design into three main tools; field 

measurements, knowledge (based on theory and experience), and models (physical or 

numerical). Beside being difficult and expensive to obtain (Kamphuis 2000), field studies are 

generally not sufficient to discern the coastal processes (Reeve, Chadwick and Fleming 2004). 

Kamphuis (2000) mentioned that knowledge based on theory and experience is a reliable 

design tool. However he pointed out that experience must be a truly coastal experience, which 

sometimes can be obtained only from project sites. This option may be unavailabe in many 

cases.   

Physical and numerical models provide an efficient design tool. Unlike the other two 

options, design modifications can be studied easily using physical and numerical models. 

Consequently, using models along with a process of trial and error, a design with a relatively 

low factor of safety can be achieved.  

Compared to physical models and laboratory tests, numerical models are more economic 

in terms of the required working space and facilities, operating costs and technical staff 

(Kamphuis 2000). This is why the main scope of this thesis is the design of a numerical 

model. 
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1.1.2 Importance of numerical wave tank models 

Engineers build various types of structures in the seas and near coastal areas. The diverse 

motivations for these projects include facilitating access to harbors and ports, protection of 

shore areas against high waves and providing suitable recreational beach areas. To meet these 

diverse requirements various types of structures are designed including seawalls and 

breakwaters (Reeve, Chadwick and Fleming 2004). Among diverse phenomena (including 

winds, tidal currents and earthquakes) waves exercise the greatest influence on maritime 

structures (Goda 1985). In fact waves are one of the most complex phenomena in the nature. 

Thus, the design of various coastal structures considering wave action is a challenging task. 

Wave tanks can be used to study various wave phenomena including wave generation, 

reflection, transmission, shoaling and nonlinear deformation due to variable bottom 

bathymetry, run-up, overtopping and forces on structures (Hughes 1993). Consequently wave 

tanks serve as valuable design tools. 

Compared to a traditional physical wave tank (PWT), a numerical wave tank (NWT) 

possesses the following advantages: 

1. In an NWT wave flow field can be obtained at any grid point. While for a PWT 

information will be limited to those provided by sensors or visual observations at 

specific places. Consequently an NWT provides more complete images about 

problems under study. 

2. PWT always have practical limitations due to dimensions and installed 

equipment. These limitations decrease the range of applicability of a PWT. This 

disadvantage can be clarified considering the wave maker component. Although 

almost all wave makers can generate periodic waves, the option of generating 

solitary waves is not available in many PWTs. On the contrary, various test 

conditions can be included in NWT in a relatively flexible manner. Consequently 

NWT can be used to study a wide range of problems. 

3. In addition to being more economic than a PWT in terms of cost, NWT can 

effectively reduce time and effort requirements. For example considerable time 

and effort are needed to fabricate a model for a coastal structure (using wood or 

concrete) to be used in a physical tank. However incorporating the same structure 
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into a NWT can be done with less time and negligible effort once the appropriate 

methodology is understood. While modifying the geometry of the PWT version of 

this structure may consume several working hours, the NWT version of this 

structure can be modified by changing some code lines. 

1.1.3 Main challenges of developing NWT 

A conclusion to be drawn from the advantages mentioned is that NWT is a very 

promising tool for researchers and engineers. As a result numerous studies exist related to the 

task of developing this important tool. However, upon developing NWT, knowledge related to 

wave theory, fluid mechanics, numerical methods and the relevant engineering applications is 

requested. In order to fulfill this relatively complicated task various approaches were adopted 

by researchers. Numerous NWTs based on frictionless, weakly deformed free surface flow 

assumptions were presented in the literature. However due to the continuous progress of 

scientific knowledge and computational capacity, numerical models are expected to provide 

more accurate results for more complex situations. As a result, relatively recently developed 

NWTs include viscous effects along with strong free surface deformations induced near 

structures or rapid varying bathymetry. An efficient way to accomplish this task is modeling 

both air and water phases simultaneously in the same problem. With an increasing concern 

about coastal environment and the high value of structures, an approach that can handle solid 

shapes with arbitrary geometry is extremely valuable. Consequently the existence of arbitrary 

solid bodies should be modeled by incorporating a solid phase in the domain. 

1.2 Objectives and Scope 

The main objective of this study is developing a NWT for modeling practical coastal 

engineering problems. To accomplish this goal the following secondary objectives should be 

accomplished: 

1. The current literature should be reviewed in order to identify the effective and 

efficient techniques adopted by others researchers to achieve the current goal. The 

important goals to be achieved in this stage are pointing out the main difficulties 

that are faced upon developing NWT, and how these difficulties were treated. 
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Although various applications can be studied using NWT, the current study main 

goal is to study wave propagation in the presence of a solid obstacle. The main 

difficulty related to this problem is modeling convection dominated flows in the 

presence of strong free surface deformations. The output of this stage is defining a 

preliminary model with an expected satisfactory performance related to this 

aspect. 

2. Upon selecting a specific methodology good understanding should be developed 

for this choice. Special attention should be allocated to studying relatively new 

methods which are expected to yield better results. Upon exploiting these methods 

the disadvantages of the models developed in the past can be efficiently 

circumvented. Special attention should be directed to investigate the relatively 

recent high order discretization schemes. These methods are expected to yield 

accurate results using uniform Cartesian grids. 

3. Model refinement based on comparing the performance of different methods 

emphasized in step 2 should be done. The aim of this step is finding the optimum 

model which can be used with confidence to model various applications. 

4. The model developed in step 3 should be validated by simulating various well 

documented wave propagation problems. In addition the developed model results 

should be compared to those of already developed models to judge the existence 

of improvements.  

5. Finally the capabilities of the developed model regarding modeling liquid, gas and 

solid phases should be further illustrated. The ability of the developed model to 

model new phenomena is investigated through modeling problems of practical 

importance. 
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2 LITERATURE REVIEW  

2.1 Background on NWT Studies 

The subject of this work is developing a general purpose numerical model, for water 

waves including arbitrary shaped moving and stationary obstacles, termed as numerical wave 

tank (NWT). Such model should be a reliable alternative for a physical flume. Numerous 

studies were done related to the same goal. Upon reviewing these studies it can be concluded 

that two main difficulties are faced upon developing NWT.  

The first difficulty is modeling the moving boundary at the water free surface (Dong and 

Huang 2004). In fact the location of this boundary is a part of the solution itself, to be 

determined after solving the problem. Consequently modeling the presence of this surface is a 

complicated task. 

The second difficulty is related to modeling viscous flow which is mainly characterized 

by the Reynolds number. This dimensionless number can be defined as a force ratio between 

inertial and viscous terms affecting a fluid element (Kay and Nedderman 1985, 138). For 

viscous flows of large values of Reynolds number, the flow becomes convection dominated. 

For this class of problems careful numerical discretization of the convection terms of the flow 

equations is needed to avoid non-physical oscillations (Fletcher 1991, 345).  In addition, for 

the values of Reynolds number of interest the flow is generally turbulent (Dean and 

Dalrymple 1984, 213). Numerical modeling of turbulent flow is a relatively complicated task, 

which is generally done using special sub-models. 

In the present chapter a literature review for the studies related to developing a NWT is 

presented. Reviewing this huge amount of studies is a difficult task. This process can be 

facilitated if the two difficulties mentioned above are taken into consideration. A starting point 

is categorizing NWT studies into the two main groups mentioned by Dong and Huang (2004). 

The first group adopts the potential frictionless flow assumption, while the second group 

adopts the viscous flow assumption. In this chapter each group is reviewed taking into account 

the two difficulties mentioned. 
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2.2 Potential Flow NWT 

The works of Grilli and Watts (2005), Koo and Kim (2004), Yuan and Tao (2003), 

Cooker, et al. (1990) are examples of a potential NWT. In these studies various applications 

were presented including wave generation due to moving obstacles and wave propgation over 

submerged obstacles. It is important to note that upon negelecting viscous effects the 

difficulties mentioned related to modeling high Reynolds number flows are totally avoided. It 

should be also noted that in these studies the flow equations are solved for the water phase 

only. The non-linear free surface boundary condition is included in the numerical model. 

Consequently waves of relatively high amplitude can be modeled (Cooker, et al. 1990, Yuan 

and Tao 2003). Another feature of NWT based on the iniviscid potential flow assumption is 

that the flow is goverend by Laplace equation (Dong and Huang 2004). Consequently the 

compuational requirements of these models are relatively reduced (Helluy, et al. 2005).  

However an important limitaion on these models is that numerical instability is 

encountered upon the occurrence of a highly defrormed free surface of high curvature or slope 

(Cooker, et al. 1990, Helluy, et al. 2005). One of the few works where this problem was 

considered is the study of Yuan and Tao (2003). They introduced a tunable artificial viscosity 

term in their potential model. The fact that this tunable parameter plays a main role in their 

model may be the reason for  the limited applicabiliy of this method.  

Another disadvantage of this group of works is the limitation of the potential flow 

assumption regarding modeling separated flow and vortices in the wake of an obstacle (Dean 

and Dalrymple 1984, 213). This limitation was clarified by Zhuang and Lee (1996) who 

provided numerical results for wave propagation over a rectangular obstacle using both 

visocus and potential models. They compared these results with experimental measurements 

and illustrated that in the separated wake zone of the obstacle, the error in flow velocities 

calculated by the potential flow model is rather big. The localized rotational and dissipative 

vortices in the wake of an obstacle have a definite impact on the mixing process, sediment 

transport and scouring process for real applications (Chang, Hsu and Liu 2001).  

A conclusion to be drawn from this discussion is that using a potential flow NWT is a 

relatively inefficient option. This is specially important when practical applications where 

viscous flow plays an important role, are considered. 
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2.3 Viscous Flow NWT 

Viscous flow NWTs were implemented using different methodologies. A group of 

viscous NWT studies can be categorized as single phase models. In these studies the 

numerical solution is limited to the liquid phase. The studies of Zhuang and Lee (1996) and 

Tang and Chang (1998) belong to this group. Both studies focused on modeling the separated 

flow field behind an obstacle. However, the free surface was tracked indirectly; using the 

potential flow solution (Zhuang and Lee 1996), or adopting a moving curvilinear grid (Tang 

and Chang 1998). Consequently, their results were limited to relatively simple free surface 

deformations induced by small sized obstacles.  

Another important group of studies focusing on a viscous NWT are the studies of Huang, 

Zhang and Lee (1998), Huang and Dong (2001), and Dong and Huang (2004). An important 

aspect of these studies is that the free surface was tracked directly using fixed Cartesian grids 

while including the viscous effects in the whole domain. The free surface was presented as a 

single valued height function. At the location indicated by this function the free surface 

boundary conditions are imposed. A disadvantage of this procedure is the difficulty of 

modeling a complicated free surface for which the height function will become multi valued 

(Fig.  2.1). Consequently the applications presented by Huang, Zhang and Lee (1998), Huang 

and Dong (2001), and Dong and Huang (2004) were limited to relatively low induced free 

surface deformation.  

 

 

 

Discretization of the incompressible viscous flow equations was done in these three 

studies using the finite analytic method. Compared to other discretization methods (e.g. finite 

difference and finite volume) the finite analytic method application is relatively limited. 

Although Huang, Zhang and Lee (1998) dedicated a considerable space to explain this 

method, they did not clarify the advantage of this method over other widely applied methods. 

Fig.  2.1. Disadvantage of height function formulation for a complex free surface 

Single valued height function 

Multi valued height function 
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Finaly it should be noted that in these three studies the problems related to modeling 

convection dominated and high Reynolds number flows were not considered. 

2.3.1 Multiphase models 

A relatively efficient group of NWT studies are based on the methods originally 

developed to model general multiphase flows. The reason for this efficiency is that the 

multiphase models are mainly designed to simulate complex free surface motion. 

Consequently enhanced performance is expected considering the first difficulty mentioned in 

section  2.1. 

Three relatively important NWTs that belong to this group are ñCOBRASò (Lin and Liu 

1998), ñVOFbreak
2
ò (Troch and De-Rouk 1999, Troch and De-Rouk 1998) and ñCADMAS-

SURFò (Isobe, et al. 1999, Interim development committee of a numerical wave flume for 

Maritime structure design 2001). These three models can provide reliable results for a 

relatively wide range of problems. Consequently more explanation should be provided for 

each of these models.  

2.3.1.1 COBRAS 

An important feature of this model is its ability of modeling both highly deformed free 

surfaces and convection dominated problems. However it should be noted that upon 

developing this model Lin and Liu (1998) followed closely a computer program called 

RIPPLE developed by Kothe, Mjolsness and Torrey (1991). Although Lin and Liu (1998) 

mentioned that they modified RIPPLE code to improve its accuracy, the details of these 

modifications were not provided in any accessible reference.  

2.3.1.1.1 Free surface tracking in COBRAS 

The free surface is tracked in COBRAS using VOF method adopted in RIPPLE code. 

This method was applied to a variety of multiphase flow problems including droplets 

formation, mold filling and surface waves (Scardovelli and Zaleski 1999, Kothe, Juric, et al. 

1998). A crucial step in VOF algorithm is free surface ñReconstructionò (Scardovelli and 

Zaleski 1999, Pilliod and Puckett 2004). This step is not simple (Sethian and Smereka 2003). 

In the reconstruction scheme of the version of VOF proposed by Hirt and Nichols (1981) used 
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in RIPPLE (thus in COBRAS) the reconstructed interface is made up of a sequence of 

segments aligned with the grid (either vertical or horizontal). This scheme is relatively crude, 

and its advection even with simple velocity fields such as translations or solid body rotations 

generates a large amount of artificial drops and bubbles (Scardovelli and Zaleski 1999). 

2.3.1.1.2 Modeling convection dominated viscous flow in COBRAS 

Convection terms are discretized in RIPPLE using the second order Van Leer 

approximation. This method is expected to suppress the non-physical oscillations already 

mentioned in section  2.1. However a general disadvantage of this relatively low order method 

compared to higher order methods is inducing excessive numerical diffusion leading to 

premature deformation and dissipation of flow vortices (Ekaterinaris 2005). As a result, 

extremely fine grid resolution may be required to accurately describe vortical flow fields. 

Consequently non-uniform grids are adopted in COBRAS where finer grids are placed only 

where high gradients are expected.  

Several complications arise upon adopting a non-uniform grid: first, separate effort is 

needed for careful grid generation and mathematical analysis of transformed equations; 

second, special care should be taken regarding the numerical cell aspect ratio because very 

small or large values for the horizontal vertical grid division ratio lead to numerical problems 

(Ferziger and Peric 2002, 133); finally, determination of the places where extra resolution is 

needed may be difficult for problems of wave propagation over obstacles. This is because 

vortices and highly deformed free surfaces may occur simultaneously. For this case effective 

non-uniform grid generation will  be a challenging task.  

A natural choice for modeling high Reynolds number turbulent flow is using a two-

equation model, in which two partial differential equations should be solved for the turbulence 

quantities. Those equations supplement the flow equations. Hence considerable effort is 

needed upon adopting this choice. The Ὧ ‭ model is the most widely used turbulence model 

belonging to two-equation models (Pope 2000, 373). In COBRAS a relatively complicated 

version of the Ὧ ‭ turbulence model is adopted. This may be the main contribution 

presented by Lin and Liu (1998) upon developing COBRAS. This turbulence model is based 

on the nonlinear model developed by Shih, Zhu and Lumley (1996). However, Lin and Liu 
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(1998) did not clarify the reason for choosing this model among other various models 

including Ὧ .and ὺςὪ (Ferziger and Peric 2002) (Wilcox 2002) ‫  

Instead of using Van Leer second order accurate method, the turbulence equations are 

discretized via a first order accurate method. Lin and Liu (1998) did not explain the reason for 

this option which may deteriorate the overall accuracy of their solver.  

2.3.1.2 VOFbreak
2
 

An important common feature between VOFbreak
2
 and COBRAS is that both models are 

based on existing codes. Troch and De-Rouk (1998) reported that VOFbreak
2
 was developed 

based on the original SOLA-VOF code designed by Nichols, Hirt and Hotchkiss (1980). In 

fact the same version of VOF used in COBRAS is adopted in this model. The convection 

terms are approximated using alternating second order ï first order accuracy as described by 

Hirt and Nichols (1981). Consequently the same disadvantages related to VOF and low order 

methods explained for COBRAS, are expected for VOFbreak
2
. In addition Troch and De-

Rouk (1998) did not emphasis modeling turbulent flow using VOFbreak
2
. 

2.3.1.3 CADMAS-SURF 

The fact that COBRAS and VOFbreak
2
 models were developed based on existing code, 

provides evidence that considerable effort is needed to develop a similar model from scratch. 

This may be the main reason why a cooperative research group has been tasked with the 

project of developing CADMAS-SURF model for three fiscal years (Isobe, et al. 1999).  

Although the same methodology of NASA-VOF model was adopted, developing the model 

from scratch may have allowed some improvements. For example the convection terms are 

discretized using QUICK method developed by Leonard (1979). This method which has a 

third order truncation error converges in a second order manner (Ferziger and Peric 2002, 79). 

An ordinary high Reynolds number Ὧ ‭ model is used in CADMAS-SURF. It should be 

noted that the same version of VOF used in COBRAS and VOFbreak
2
 is used in CADMAS-

SURF. 
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2.3.1.4 Remarks on COBRAS and CADMAS-SURF 

The two different versions of the Ὧ ‭ turbulence model used in COBRAS and 

CADMAS-SURF include complications regarding boundary conditions. Proper conditions to 

be applied near walls are not known due to the unknown behavior of some turbulent quantities 

near a wall (Ferziger and Peric 2002, 301). Using the wall function concept is suggested as a 

remedy (Pope 2000, Wilcox 2002, Ferziger and Peric 2002, Chung 2002), where the 

conditions on Ὧ and ‭ are specified using special functions. In this method the boundary 

values depend on the distance from the wall and the local wall shear stress. For such 

complicated conditions to be valid, the first numerical grid point should be close enough to the 

wall (Ferziger and Peric 2002, 299). As a result, a non uniform grid is also required near the 

wall leading to the difficulties mentioned earlier in Subsection  2.3.1.1.2. In addition the role of 

the wall function may be unrealistic if the flow velocity increases (Chung 2002, 689). An 

extra complication that exists upon simulation of free surface flow is that zero normal gradient 

conditions for Ὧ and ‭ should be applied at the free surface (Lin and Liu 1998). Assignment of 

this condition on the moving free surface boundary is not a trivial task.  

2.4 Modern Discretization Methods 

A common feature between COBRAS, VOFbreak
2
 and CADMAS-SURF is using 

relatively old low order methods to discretize the convection terms. On the other hand upon 

using modern methods important advantages can be exploited. These advantages are related to 

the two difficulties mentioned in  2.1. 

2.4.1 Role of modern methods in viscous flow 

As already mentioned in subsection  2.3.1.1.2 high order methods are more efficient than 

low order methods. The reason is that they can provide better solutions using relatively coarse 

grids. An example for these methods is the third order accurate CIP method. Yoon and Yabe 

(1999) illustrated that upon using this method accurate results can be obtained using relatively 

coarse grids.  

Another important advantage of modern discretization methods is their ability of 

modeling some types of turbulent flows without using an explicit turbulence model. 
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Ekaterinaris (2005) reported that the inherent dissipation of nonlinear high resolution methods 

can be exploited to successfully compute certain types of turbulent flows without need to an 

explicit turbulence model. As a result all the complications already mentioned related to  

Ὧ ‭ models can be avoided. Such technique was termed recently as ILES standing for 

Implicit Large Eddy Simulation (Thornber, Mosedale and Drikakis 2007). The main argument 

behind such technique mentioned by Drikakis (2003) is that the flux limiters found in many 

recent high order methods can act like a self-adjusting model that modify the numerical 

viscosity to produce a nonlinear eddy viscosity. A similar principal was adopted in the work 

of Kawamura, Takami and Kuwahara (1986) which may be a pioneer study in this field. 

One of the relatively modern high order methods is the weighted essentially non-

oscillatory (WENO) fifth order space accurate method (Jiang and Shu 1996). According to the 

review made by Ekaterinaris (2005) this is one of the methods that can be used to model 

turbulent flow without an explicit model.  

2.4.2 Role of modern methods in capturing free surface 

A common feature among COBRAS, VOFbreak
2
, and CADMAS-SURF is that the wave 

free surface is tracked using VOF method. Another widespread method for capturing the free 

surface in multiphase flow is the Level Set method (Osher and Sethian 1988).  Generally both 

VOF and level set methods capture the free surface by solving the same interface equation 

(Kothe, Juric, et al. 1998). However unlike VOF, reconstruction is avoided in the level set 

method. Instead an accurate solver like WENO should be used to solve the interface equation. 

This is the reason why level set is a simple alternative compared to VOF.  

Another example of modeling multiphase flow with reduced effort using a high order 

method is the works of Yoon and Yabe (1999), Yabe, Xiao and Utsumi (2001) and Yabe, 

Takizawa, et al. (2005). In these works the liquid and gas phases are marked by a color 

function taking the discrete values of one and zero. This function is governed by the same 

interface equations used in VOF and level set methods. The interface function is solved using 

the third order CIP method. This is another example of methods that capture the free surface 

in a simplified manner. 
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2.5 Conclusions 

From the literature review presented the following conclusions can be drawn 

1. Among various NWTs the studies adopting viscous multiphase flow models are 

the most effective.  

2. Two apparent difficulties that appear upon selecting this choice is the big effort 

needed to develop the free surface capturing algorithm and the turbulence model. 

3. These difficulties can be effectively reduced upon selecting a suitable scheme for 

discretizing the convection terms. 

Consequently the main aim of this thesis is to find the most efficient combination among 

various discretization schemes. Adopting this combination a reliable NWT can be developed 

with rather reduced effort.
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3 NUMERICAL MODEL  

The main feature of the current numerical model is modeling multiphase flow adopting a 

regular cartesian grid. Even with such simple option special care should be made regarding the 

governing equations, variables definitions, numerical grid and the boundary conditions. The 

aim of this chapter is to explain these aspects in detail. In addition the main steps and logic of 

the model is explained. 

3.1 Governing Equations 

Neglecting surface tension, for a two-phase gas-liquid flow the incompressible Navier 

Stokes equations can be written in dimensionless form as (Sussman, Smereka and Osher 

1994): 
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Eqs. (3.1a) and (3.1b) are the continuity and momentum equations, respectively, where ό 

is the dimensionless velocity in the Ὥ direction. Ὣ is the gravity force defined using Kronecker 

delta as Ὣ ωȢψ‏ . In Eq. (3.1) the index Ὥ ρȟς stands for the horizontal and vertical ὼȟώ 

directions, respectively;  ὒÐ and ὟÐare the reference length and velocity scales, respectively; 

Ὑ  is the dimensionless Reynolds number defined as Ὑ ”ÐὟÐὒÐ ‘Ðϳ ; ὖȟ” and ‘ are the 

dimensionless pressure, density and viscosity that are normalized using ”Ὗ , ”  and ‘  , 

respectively. Three important terms that exist in the right hand side of Eq. (3.1b) are: 

convection or momentum terms ‬όό ‬ὼ , viscous terms 

‬‘ ‬ὼ , and the pressure gradient term (ρ”ϳ‬ὖ‬ὼϳ ). 
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3.2 Numerical Algorithm  

In the present work Eq. (3.1) is solved using the framework of MAC method. This 

efficient methodology was used in many works (Lee and Mizutani 2009, Zhang and Jackson 

2009, Yoon and Yabe 1999). Details about MAC method are found in Fletcher 1991. A 

staggered grid is adopted (Fig.  3.1), where the pressure node is located at the cell center, while 

horizontal and vertical velocities are located at the cell vertical and horizontal faces, 

respectively. An important advantage for using this grid is the strong coupling between the 

velocities and the pressure, avoiding convergence problems and fictitious oscillations 

(Ferziger and Peric 2002, 166).  

 

 

 

In MAC formulation the momentum equation is time integrated to obtain horizontal and 

vertical velocities (Fletcher 1991): 
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Fig.  3.1. MAC Staggered grid  
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Momentum terms (Ὄὓέά and ὠὓέά) and viscous terms (ὌὠὭίὧ and ὠὠὭίὧ) are 

discretized using variables at the time step ὲ, while the pressure is discretized using the value 

at step ὲ ρ. Eq. (3.2) can be rearranged as: 
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The discrete right hand terms ὌὙὌὛ ȟϳ  and ὠὙὌὛȟ ϳ  are defined as: 

 

ὌὙὌὛ ȟϳ ό ȟϳ Ὄὓέά ȟϳ ὌὠὭίὧȟϳ ɝὸ (3.4a) 

ὠὙὌὛȟ ϳ ὺȟ ϳ ὠὓέάȟ ϳ ὠὠὭίὧȟ ϳ ɝὸ (3.4b) 

 

The divergence free constraint (Eq.(3.1a)) is fulfilled through the following 

discretization: 
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Eq. (3.5) can be rearranged using Eq. (3.3) in the following form 
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(3.6) 

 

The pressure is computed by solving Eq. (3.6) which is a Poisson equation for pressure 

(PPE).  

 

 

 

 

The main steps of the numerical model are organized in a flow chart in Fig.  3.2. The 

model performance is strongly affected by steps 1 and 2. In fact the existence of gas and liquid 

phases is modeled in step 1. Also step 2 is the primary time-consuming step in this procedure. 

For these reasons two separate subsections are devoted to explain each of these two steps.  

Fig.  3.2. Numerical model flow chart 

Step 1: Evaluate ὌὙὌὛ ȟϳ  and 

ὠὙὌὛȟ ϳ  using Eq. (3.4) 

Step 2: Solve Eq. (3.6) (PPE) for ὖȟ  

Step 3: evaluate ό ȟϳ  and ὺȟ ϳ  

by substitution in Eq. (3.3) 

Step 4: Update flow variables 

Maximum simulation 

time reached? 

NO 

     End 

Yes 
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3.2.1 Discretization of momentum and viscous terms 

Using central differencing, the viscous term of the horizontal and vertical momentum 

equation can be discretized as: 
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(3.7b) 

 

Discretization of the momentum terms is a relatively complicated task. Unlike the viscous 

terms, the use of central differencing formulae to approximate the momentum terms, leads to 

solutions with severe non-physical oscillations for the case of high Ὑ (Fletcher 1991, 345). 

Various special discretization formulae exist to approximate the convection terms. The 

discretized values for viscosity (‘ȟ) and density (”ȟ) are considered to be spatially variable 

to account for the presence of gas and liquid phases with different properties. The discrete 

values of ‘ and ” are calculated based on the gas-liquid interface tracking algorithm. The 
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literature is rich with various techniques to implement this algorithm. Since both algorithms 

(momentum terms discretization and interface tracking) play a crucial role in the current 

model, an extended presentation of both algorithms is presented in chapter 5.  

3.2.2 Solution of PPE 

The Pressure poisson equation is a system of linear algebraic equations. The number of 

equations of this system is ὔ ὔ ὔ , where ὔ  and ὔ  are the number of grid cells in the 

ὼ and ώ directions respectively. Eq. (3.6) can be rewritten as: 

 

! 0 Â (3.8) 

 

Where ! is the coefficient matrix (size ὔ ὔ), 0 is a vector (size ὔ) of the pressure at all 

nodes and Â is the right hand side vector (size ὔ) calculated from the right hand side of Eq. 

(3.6). In Eq. (3.8) the unknown to be calculated is 0. For values of ὔ  and ὔ  ͯςππ the 

system size ὔ becomes ͯ τ ρπ. Storing all the elements of !  matrix using double 

precision requires a computer memory of ὔ ὔ ψ ρςψρπ bytes (more than 11 

Gigabytes).  This requirement is beyond the capabilities of PCs, even with considering the 

progress in modern computers. On the other hand, it can be observed from Eq. (3.6) that each 

value of ὖȟ  is linked to only other 4 values (ὖ ȟȟὖ ȟȟὖȟ  and ὖȟ ). In fact each row 

of ! contains only 5 non-zero elements, which are the coefficients of the 4 surrounding 

pressure variables plus the diagonal value. Limiting storage to non-zero elements dramatically 

reduces the required storage size. For instance, the required storage of the mentioned example 

is reduced to υ ὔ ψ ρφπρπ (less than 2 Megabytes). Since matrix ! contains 

many zero elements it is termed as a ñSparseò matrix (Yousef 2000). Solving Eq. (3.8) can be 

done using Direct or Iterative methods (Ferziger and Peric 2002).  
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Fig.  3.3. Bi-CGSTAB method pseudocode 

 

On the other hand iterative methods do not produce non-zero elements in a sparse system and 

the flops required by them may be proportional to ὔȢ (Van-Der-Vorst 1994). Considering 

CFD applications, iterative methods computational costs are usually cheap compared to direct 

methods (Ferziger and Peric 2002, 97) Gauss elimination and LU decomposition are two well 

known direct methods which can be generally applied to any linear system. Unfortunately 

upon using both methods non-zero values are produced leading to storage space problems. 
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Generally the number of required floating point operations (flops) required by direct methods 

is proportional to ὔ  (Van-Der-Vorst 1994).  

 

Various iterative methods exist. However among those various methods the Bi-CGSTAB 

method has the following advantages (Barret, et al. 1993): 1) This method is applicable to 

both symmetric and anti-symmetric systems of equations. 2) Compared to some other iterative 

methods (e.g. GMRES method) the storage requirements are relatively small. 3) Bi-CGSTAB 

should provide a more regular convergence pattern compared to other iterative methods (e.g. 

Conjugate Gradient method). For these reasons Bi-CGSTAB method is selected in the current 

thesis. The method pseudocode extracted from Barret et al. (1993) is shown in Fig.  3.3. 

The Bi-CGSTAB algorithm relies on three basic operations: matrix-vector multiplication 

(required two times), vector-vector inner product (required four times) and providing a 

solution for the preconditioning system - 8 " (required two times). The matrix passed to 

the matrix vector multiplication subroutine should consist only of the non-zero entries to save 

computation storage and time. The preconditioning matrix -  should fulfill two criteria. The 

first criterion is that - should provide a close approximation to!. The second criterion is 

that solving the system  - 8 " should be easier than solving ! 8 " . A possible choice 

is to assign  -  to the diagonal of !. This is the choice adopted in the current model. This is 

the simplest choice and is known as the Jacobi preconditioner (Barret, et al. 1993). It is 

possible to use this preconditioner without using any extra storage beyond that of  ! itself.  

3.3 Boundary Conditions 

3.3.1 Wall conditions 

Implementation of wall boundary condition is described by Fletcher (1991). The 

numerical cell boundaries should coincide at the domain boundaries. Velocity wall boundary 

conditions are implemented in a natural way. For a horizontal lower wall (Fig.  3.4) no 

penetration boundary condition is implemented as ὺȟϳ π. 

For the horizontal velocity the condition is more complicated, since ό ϳȟ does not 

reside at the horizontal boundary. For a prescribed horizontal wall horizontal velocity Ὗ the 
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condition on ό ϳȟ can be described using the fictitious horizontal velocity ό ϳȟ located 

outside the domain. If Ὗ is assigned to the average of ό ϳȟ and ό ϳȟ, the following 

equation is concluded: 

ό ϳȟ ςὟ ό ϳȟ (3.9) 

 

The value of ό ϳȟ used to impose velocity boundary condition is incorporated in  

ὌὙὌὛϳȟ . 

 

 

Considering pressure boundary conditions Eq. (3.6) is written For Ὦ ρ: 

 

ρ

ɝὼ

”ȟ
” ȟϳ

ὖ ȟ

”ȟ
” ȟϳ

”ȟ
” ȟϳ

ὖȟ
”ȟ
” ȟϳ

ὖ ȟ  

ρ

ɝώ

”ȟ
”ȟϳ

ὖȟ
”ȟ
”ȟϳ

”ȟ
”ȟϳ

ὖȟ
”ȟ
”ȟϳ

ὖȟ  

”ȟ
ὌὙὌὛ ȟϳ ὌὙὌὛ ȟϳ

ɝὼɝὸ

ὠὙὌὛȟϳ ὠὙὌὛȟϳ

ɝώɝὸ
 

(3.10) 
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ὺȟϳ π 

ὺȟϳ  

Ὥ ρ Ὥ Ὥ ρ 

+1 

Ὦ ρ 

+1 

ὖ ȟ ὖȟ 

ὖȟ 

ὖȟ 

ὖ ȟ 

Fig.  3.4. Staggered grid at a lower horizontal boundary 

Ὦ π 

+1 

Ὦ ς 

+1 

ό ϳȟ Lower horizontal boundary 
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 For this equation two problems exist. The first is that there is no clear information about 

ὖȟ  which resides outside the domain. The second is that computing ὠὙὌὛȟϳ  also also 

needs an estimate for ὖȟ . Both problems can be circumvented in the following way 

(Anderson, Tannehill and Pletcher 1984). Eq. (3.3b) can be written at Ὦ π as: 

 

ὺȟϳ ὠὙὌὛȟϳ
ɝὸ

”ȟϳ

ὖȟ ὖȟ
ɝώ

π (3.11) 

 

The zero on the right hand side is obtained from the no-penetration condition. Eq. (3.11) 

can be rewritten as: 

”ȟ
”ȟϳ

ὖȟ ὖȟ
ɝώ

”ȟ
ὠὙὌὛȟϳ

ɝώɝὸ
 (3.12) 

 

Both the left hand side and the right hand side of Eq. (3.12) appear in Eq. (3.10). It is 

straightforward to cancel them as: 
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(3.13) 

 

Finally the boundary condition for pressure can be shown as: 
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(3.14) 
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An interesting result that can be observed is that the terms related to external domain 

variables are simply neglected.  

3.3.1.1 Wide stencil wall condition 

Upon using higher methods a wider stencil is generally required. For instance it will be 

shown in  4.3.2 that six grid points are nWENO algorithmeeded to get a fifth order accurate 

approximation of the partial derivative. For this case no normal gradient condition is adopted 

at domain boundaries (Park, Kim and Miyata 1999). This condition is rather straightforward to 

apply. In fact the values at the fictitious nodes outside the domain are assigned to the values of 

the corresponding (opposite) nodes inside the domain. 

3.3.2 Introduction of solid bodies 

In the present work, wave propagation over arbitrarily shaped submerged bodies is 

studied. Modeling such irregularly shaped boundary problems using a Cartesian uniform grid 

is done using the ñBlocked-off Regionsò method. The blocked-off regions method is rather 

straightforward as described by Patankar (1980). The same discretization is done for all grid 

points. However, for grid points inside the solid body, the velocity is assigned to the 

prescribed value. Patankar (1980) reported that surprisingly good answers can often be 

obtained using such a simple method. 

3.3.3 Sponge layer condition 

Following the methodology of Troch and De-Rouk (1999), ñabsorbing boundaryò 

conditions are implemented at the lateral boundaries. The purpose for using such conditions is 

to minimize the effects of waves reflected from the domain boundaries. An absorbing function 

is applied to the flow variables near the domain lateral boundaries. This function is given by: 

 

ὥ ὼ ρ
ὼ ὼ

ὼ
 (3.15) 
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where ὼ is the location of the edge of the sponge layer, and ὼ is the sponge layer width. 

It is clear that the function varies gradually from ὥ ὼ ρ, which provides no damping at 

the edge of the layer, to ὥ ὼ ὼ π, which provides total damping at the far edge of the 

domain. In the present work, damping is applied to the vertical velocity. 

3.4 Approximation of Velocity  

It should be noted that some numerical algorithms require the velocity values to be 

known at places that are different than the locations they are originally defined. For example it 

will be shown in chapter 3 that the vertical velocity ὺ may be required at the place the 

horizontal velocity ό is defined. In this case ὺ ϳȟ is calculated by interpolation as: 

ὺ ϳȟ

ρ

τ
ὺ ȟ ϳ ὺȟ ϳ ὺ ȟ ϳ ὺȟ ϳ  (3.16) 
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4 DISCRETIZATION METHODS  

As already mentioned in Chapter 2, the discretization of the momentum terms and the 

gas-liquid interface tracking algorithm are relatively complicated topics. Consequently the 

discretization method used for these tasks plays an important role in the current model. This is 

the reason why different methods should be compared and tested. This chapter is dedicated to 

present the theoretical aspects, details and results of various methods. This step is rather 

necessary to design a reliable model. Among many discretization methods, only three methods 

are considered in this chapter, which are CIP, CIP-CSL3 and WENO5. The main reason for 

this selection is that these three methods can be used on a regular Cartesian grid. 

Consequently the effort required to apply these methods is relatively small. In addition the 

three methods have been applied successfully in many applications. 

4.1 CIP method 

4.1.1 Theoretical background 

The CIP method was applied for various applications. Yabe et al. (2001) presented 

various examples of these applications. They explained the strategy behind CIP in the 

following points. Considering a one-dimensional advection equation for any scalar quantity Ὢ 

 

‬Ὢ

‬ὸ
ό
‬Ὢ

‬ὼ
π (4.1) 

 

Subject to the initial condition 

 

Ὢ ὼȟὸ ὸ ὦὼ (4.2) 

 

Using characteristics it can be shown that for a constant value of the ό, the initial profile of Ὢ 

is translated continuously in time (Fig.  4.1a). The resulting solution is: 
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Ὢ ὼȟὸ ὸ ɝὸ Ὢ ὼ όɝὸȟὸ ὸ ὦὼ όɝὸ (4.3) 

 

Although the exact solution is rather easy, a serious problem occurs if Eq. (4.1) is solved 

numerically. Any numerical method considers only the solution at discrete points (Fig.  4.1b). 

The first order upwind scheme translates the function values at these discrete points. This 

leads to extra diffusion near a sharp edge (Fig.  4.1d). To fix this problem both the function 

values and derivatives are calculated numerically in CIP. The result should be a better 

reproduction of the solution reserving the originally sharp gradients (Fig.  4.1c). The function 

derivatives are obtained based on the space derivative of Eq. (4.1).  

 

 

4.1.2 CIP algorithm  

Another important concept in CIP is to rely on Eq. (4.3) to update the function values. 

For this reason the CIP can be sorted out as a kind of semi-Lagrangian method (Yabe, Xiao 

and Utsumi 2001). Third order space interpolation is used to present ὦὼ. The coefficients of 

the third order interpolation polynomial are evaluated based on both the values of Ὢ and its 

όɝὸ 

a b Discrete grid 

values 

c 

Reconstruction based 

on function values and 

spatial derivative 

d 

Reconstruction based on 

function values only 

Sharp gradient 

preserved 

Diffused 

gradient 

Fig.  4.1. The principle of CIP is based on considering both the function value and derivative to 

prevent extra diffusion 
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derivatives. This is done to decrease the interpolation stencil (grid points included in 

computing ὦὼ at each point). Yabe, Xiao and Utsumi 2001 reported that this scheme which 

is based on such compact stencil is able to localize dispersion errors to the regions where large 

local gradients appear. 

4.1.2 CIP algorithm  

The method algorithm is described based on the two dimensional version of Eq. (4.1) 

with a nonzero right hand side (Yabe, Ishikawa, et al. 1991). 

 

‬Ὢ

‬ὸ
ό
‬Ὢ

‬ὼ
ὺ
‬Ὢ

‬ώ
Ὣ (4.4) 

 

The space partial derivatives of Eq. (4.4) can be written as: 

 

‬Ὢ

‬ὸ
ό
‬Ὢ

‬ὼ
ὺ
‬Ὢ

‬ώ
Ὣ ό

‬Ὢ

‬ὼ
ὺ
‬Ὢ

‬ώ
 (4.5a) 

‬Ὢ

‬ὸ
ό
‬Ὢ

‬ὼ
ὺ
‬Ὢ

‬ώ
Ὣ ό

‬Ὢ

‬ὼ
ὺ
‬Ὢ

‬ώ
 (4.5b) 

 

The term Ὣ is an arbitrary function of Ὢ and its derivatives. The time integration of Eq. 

(4.4)-(4.5) is done based on two steps; the advection step and the non-advection step.  

4.1.2.1 Advection step 

In the advection step Eq. (4.4) and Eq. (4.5) are solved based on a zero right hand side. 

Using the method of characteristics, the values of Ὢ and the partial derivatives are 

approximated as  

 

Ὢᶻ Ὂὼ όɝὸȟώ ὺɝὸ (4.6a) 

Ὢᶻ
‬Ὂὼ όɝὸȟώ ὺɝὸ

‬ὼ
 (4.6b) 
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Ὢᶻ
‬Ὂὼ όɝὸȟώ ὺɝὸ

‬ώ
 (4.6c) 

 

Ὂὼȟώ is the third order interpolation function already mentioned. Eq. (4.6) is solved as: 

 

Ὢȟ
ᶻ Ὂὼ όȟɝὸȟώ ὺȟɝὸ Ὂὼ ‚ȟώ – 

ὃ‚ ὃ– ὃ ‚ ὃ– Ὢ ȟ
ᶻ ‚ ὃ– ὃ‚ ὃ – Ὢ ȟ

ᶻ –+Ὢȟ 
(4.7a) 

Ὢ ȟ
ᶻ σὃ‚ ςὃ– ςὃ ‚ ὃ ὃ–– Ὢ ȟ (4.7b) 

Ὢ ȟ
ᶻ σὃ– ςὃ‚ ςὃ – ὃ ὃ‚‚ Ὢ ȟ (4.7c) 

 

The coefficients ὃȟὃȟὃȟὃȟὃȟὃ  and ὃ  are calculated based on the values of Ὢ  

and its partial space derivative in the suitable interpolation cell. In fact for each Ὢȟ
ᶻ four 

numerical cell exists. The suitable cell is determined based on the sign of the velocity 

components ό and ὺ. An efficient algorithm for finding this cell is provided by Yabe, 

Ishikawa, et al. 1991 as: 

 

‚ όȟɝὸ     – ὺȟɝὸ (4.8a) 

ὭίὫὲίὫὲόȟ     ὮίὫὲίὫὲὺȟ   Ὥάρ Ὥ ὭίὫὲ    Ὦάρ Ὦ ὮίὫὲ (4.8b) 

ὃ Ὢȟ Ὢ ȟ Ὢȟ Ὢ ȟ            Ὕὓὖ Ὢ ȟ Ὢ ȟ (4.8c) 

ὃ
Ὢ ȟ Ὢ ȟɝὼ ὭίὫὲςὪȟ Ὢ ȟ

ɝὼ ὭίὫὲ
 (4.8d) 

ὃ
ὃ Ὢ ȟ Ὢ ȟɝὼ ὭίὫὲ

ɝὼɝώ ὮίὫὲ
 (4.8e) 

ὃ
σὪ ȟ Ὢȟ Ὢ ȟ ςὪ ȟɝὼ ὭίὫὲ

ɝὼ
 (4.8f) 
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ὃ
ὃɝὼ Ὕὓὖ

ɝὼ ὭίὫὲ
 (4.8g) 

ὃ
ςὪȟ Ὢȟ Ὢ ȟ Ὢ ȟɝώ ὮίὫὲ

ɝώ ὮίὫὲ
 (4.8h) 

ὃ
ὃ Ὕὓὖɝώ ὮίὫὲ

ɝὼɝώ ὭίὫὲ
 (4.8i) 

ὃ
σὪȟ Ὢȟ Ὢ ȟ ςὪ ȟɝώ ὮίὫὲ

ɝώ
 (4.8j) 

4.1.2.2 Non Advection step 

In the non advection step the effect of the right hand side terms of Eq. (4.4) and Eq. (4.5) 

is taken into account. 

 

Ὢȟ Ὢȟ
ᶻ Ὣȟ

ᶻɝὸ (4.9a) 
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(4.9b) 
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(4.9c) 

 

According to Yabe and Aoki (1991), the final terms at the right hand side of Eq. (4.9b) 

and Eq. (4.9c) approximate Ὣ and Ὣ . They pointed out that this approximation circumvents 

the difficulty of obtaining the finite difference form of Ὣ and Ὣ  when Ὣ includes high order 

space derivatives and non-linear terms. 
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The one dimensional version of CIP was tested extensively (Yabe and Aoki 1991, 

Takewaki, Nishiguchi and Yabe 1985). This version suffers from two disadavantges near a 

sharp gradient; diffusion to a finite thickness region, and production of spuriuos oscillations. 

Yabe and Aoki 1991, Takewaki, Nishiguchi and Yabe 1985 suggetsed special algorithms to 

overcome this obstacle. However they did not suggest similar algorithms for the two 

dimensional version, although the same problem exist. This may be attribted to the fact that 

the two dimensional algorihm is relatively complicated compared to the one dimensional 

version. It should be noted dthat the two dimensional version requires the values of the 

vertical velocity to be known at the place the horizontal velocity is defined. In this case the 

interpolation formula given by Eq. (3.16) is used. 

4.2 CIP-CSL3 method 

4.2.1 Theoretical background 

The CIP-CSL3 method (Xiao and Yabe 2001) adopts a semi-lagrangian concept similar 

to CIP. In fact Eq. (4.6a) is used for time integration. CIP-CSL3 can be regarded as an 

enhanced version of the CIP for the following reasons. CIP-CSL3 algorithm is designed to use 

the same interpolation formula for the one dimensional and the two dimensional versions. 

This facilitates using variuos oscillationless interpolation schemes efficiently. Another 

advantage of CIP-CSL3 is that the function partial derivatives are not included in the scheme. 

Hence, the data storage requirements are reduced compared to CIP. 

4.2.2 CIP-CSL3 algorithm 

The one dimensional solution algorithm will be presented. Next the extension to the two 

dimensional problems will be explained. The algorithm aims at solving Eq. (4.10) 

 

‬Ὢ

‬ὸ

‬όὪ

‬ὼ
π (4.10) 

 

In order to apply a semi-lagrangian scheme, Eq. (4.10) is split into two parts. 
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‬Ὢ

‬ὸ
ό
‬Ὢ

‬ὼ
π (4.11a) 

‬Ὢ

‬ὸ
Ὢ
‬ό

‬ὼ
π (4.11b) 

 

Eq. (4.11a) is regarded as the Lagrangian phase. As already mentioned in  4.1.1, the exact 

solution of this equation from method of characteristics is: Ὢὼȟὸ Ὢὼ όῳὸȟὸ ῳὸ. 

After Ὢ is obtained, the new solution Ὢὸ is obtained from Eq. (4.11b) by explicit finite 

difference. The main task of CIP-CSL3 is to provide adequate oscillation less space 

interpolation of Ὢὼ όῳὸȟὸ ῳὸ.  

For an equally spaced grid extending between ὼ and ὼ  with number of 

subdivisions ὔ , the following vectors are used: ὪӶȟὪȟὨȟὪ Ⱦ , which are the average 

value at cell Ὥ, the function value at center of cell Ὥ, the derivative at center of cell Ὥ, and the 

function value at the left node of cell Ὥ. All vectors are the new output values. Two fictitious 

cells are added to the left and right of the domain, to impose boundary conditions. So the 

value of Ὥ ranges from π to  ὔ ρ for ὪӶȟὪȟὨ . For Ὢ Ⱦ  the index varies from π to 

ὔ ς. The following input vectors from the last steps are used ὪӶ ȟὪ ȟὨ ȟὪ Ⱦ. 

Also the following vectors are needed ό Ⱦȟόȟὧ Ⱦ
 ȟὧ Ⱦ

 ȟὧ Ⱦ
 ȟὧ Ⱦ

 ȟὧ Ⱦ
 ȟὧ Ⱦ

 , 

which are the velocity at the left node of cell Ὥ, the velocity at the center of cell Ὥ, and the last 

six vectors are computational vectors needed for interpolation. The index for ό Ⱦ ranges 

from π  to ὔ ς . Both ό and ὪӶ  have the same size. For 

ὧ Ⱦ
 ȟὧ Ⱦ

 ȟὧ Ⱦ
 ȟὧ Ⱦ

 ȟὧ Ⱦ
 ȟὧ Ⱦ

 , the index ranges from 1 to ὔ +1. 

It is important to note that both Ὢ  and Ὢ  can share the same vector on computation to 

save memory space. Also Ὠand Ὠ  share the same vector. The method can be broken down 

into four steps. These steps are shown in Pseudocode form in Table  4.1. 

Ὠ  is the slope of the interpolation function at cell Ὥ. Xiao and Yabe (2001) reported 

that this parameter provides a way to modify the interpolation function for suppressing 

numerical oscillations. 
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Table  4.1. One dimensional CIP-CSL3 Pseudocode 

Inputs Outputs Equations 

ὪӶ ȟὪ Ⱦ  Ὢ  Ὢ ρȢυὪӶ πȢςυὪ Ὢ Ⱦ  

Ὢ  Ὠ  

Ὓ
Ὢ Ὢ

ɝὼ
  Ὓ

Ὢ Ὢ

ɝὼ
 

Ὠ ‍ άὭὲάέὨ
Ὓ Ὓ

ς
ȟςὛȟςὛ  

 

‍ πȢπρςυὭὪ ό ϳ ό ϳ πȢπρɝὼ

ρȢς έὸὬὩὶύὭίὩ
 

ὪӶ ȟὪ  

Ὠ  

ὧ ȟὧ ȟ 

ὧ ȟὧ ȟ 

ὧ ȟὧ  

ὧ 
φ

ɝὼ
ὪӶ

φ

ɝὼ
Ὢ ςὨ  

ὧ 
φ

ɝὼ
ὪӶ

σ

ɝὼ
σὪ Ὢ

φ

ɝὼ
Ὠ  

ὧ 
τ

ɝὼ
Ὢ Ὢ

τ

ɝὼ
Ὠ  

ὧ 
φ

ɝὼ
ὪӶ

φ

ɝὼ
Ὢ ςὨ  

ὧ 
φ

ɝὼ
ὪӶ

σ

ɝὼ
σὪ Ὢ

φ

ɝὼ
Ὠ  

ὧ 
τ

ɝὼ
Ὢ Ὢ

τ

ɝὼ
Ὠ  

ὧ ȟὧ ȟ 

ὧ ȟὧ ȟ 

ὧ ȟὧ ȟ 

ὪӶ ȟὪ  

Ὢ ȟό ȟ 

ό 
 

ὪӶȟὪ  

‚ ό ɝὸ 

Ὢ =

Ὢ ὧ ‚ ὧ ‚ ὧ ‚  ό π

Ὢ ὧ ‚ ὧ ‚ ὧ ‚ ό π
 

Ὢ Ὢ
ɝὸ

ɝØ
Ὢ ό ό  

Ὢὰόὼ ÍÉÎπȟ‚ Ὢ

ὧ ‚

ς

ὧ ‚

σ

ὧ ‚

τ
 

άὥὼπȟ‚ Ὢ

ὧ ‚

ς

ὧ ‚

σ

ὧ ‚

τ
 

ὪӶ ὪӶ Ὢὰόὼ Ὢὰόὼ 
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Consequently they dedicated a considerable effort to find a good approximation for  

 Ὠ  by testing three different methods. However in a relatively recent work (Xiao and 

Ikebata 2003) these three methods were ignored. Instead relatively simple formulas were 

propose to calculate  Ὠ . In addition Xiao (2004) suggetsed another simple formula which is 

selected in the current work (second step in Table  4.1). Xiao (2004) noted that the 

determination of ‍ is somewhat arbitrary and might be problem dependent. He specified a 

value determined from numerical experiments in his study. 

It should be noted that there was an error in the sign of the second term in ὧ Ⱦ
 as 

written in Xiao and Yabe (2001). The correct form was written in Xiao and Ikebeta (2003).  

Finally the άὭὲάέὨ function is defined as (Hoffmann and Chiang 2000, 246): 

 

Ὓ
ὥρ

ὥὦίὥρ Ὡὴί
 (4.12a) 

άὭὲάέὨὥρȟὥςȟὥσ Ὓ άὥὼ πȟάὭὲὥὦίὥρȟὛ ὥςȟὛ ὥσ  (4.12b) 

 

The procedure explained above which is the one-dimensional version CIP-CSL3, is 

programmed in a subroutine whose outputs are ὪӶȟὪ . Extension to two-dimensions is done 

by splitting the domain in ὼ and ώ directions. Upon such splitting a slight difference in the 

variable definitions appear. ὪӶȟ is the volume average evaluated over cell ὭȟὮ whose volume is 

ɝὼɝώ (unit thickness assumed). Also Ὢ
ȟ
 is defined as the surface average evaluated at the 

left vertical face of cell ὭȟὮ. Similarly Ὢ
ȟ

 is the surface average at the lower horizontal face 

of cell ὭȟὮ (Xiao 2004). Using these variables the two dimensional version of CIP-CSL3 is 

based on two successive one-dimensional steps (Xiao, Ikebata and Hasegawa 2005). The two 

dimensional algorithm of CIP-CSL3 is shown in Pseudocode form in Table  4.2. The second 

and fourth steps of Table  4.2 which are the main core of the multi dimensional extension rely 

on the TEC formula (Xiao, Ikebata and Hasegawa 2005). 
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Table  4.2. Two dimensional CIP-CSL3 Pseudocode 

Inputs Outputs Equations 

ὪӶȟ ȟὪ ȟ
 ὪӶȟ

ᶻȟὪ
ȟ

ᶻ  

Equate the inputs of Pseudocode of Table  4.1 to  

ὪӶȟ ȟὪ ȟ
 

and the outputs to  ὪӶȟ
ᶻȟὪ

ȟ

ᶻ  

ὪӶȟ ȟὪӶȟ
ᶻȟὪ

ȟ
 Ὢ

ȟ

ᶻ  Ὢ
ȟ

ᶻ Ὢ
ȟ

ρ

ς
ὪӶȟ
ᶻ ὪӶȟ ὪӶȟ

ᶻ ὪӶȟ  

ὪӶȟ
ᶻȟὪ

ȟ

ᶻ  ὪӶȟȟὪȟ
 

Equate the inputs of Pseudocode of Table  4.1 to  

ὪӶȟ
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4.3 WENO method 

4.3.1 Theoretical background 

In the present section WENO method (Weighted Essentially Non-Oscillatory method) is 

presented. It is important to provide an appropriate discussion about the concept behind 

WENO. In fact this concept is totally different than the one behind CIP. It should be noted that 

the present section is mainly based on on the material presented by Shu 1998.  

In WENO method a concept that it is much similar to finite difference methods is 

adopted. These methods are based on interpolation of discrete data using polynomials or other 

simple functions. In the approximation theory, it is well known that the wider the stencil, the 

higher the order of accuracy. However this argument is correct provided the function being 

interpolated is smooth inside the stencil. However interpolation using second or higher order 

accuracy is necessarily oscillatory near a discontinuity. These spurious oscillations which are 

called the Gibbs phenomena, often lead to numerical instability in nonlinear problems with 

discontinuities. Two common ways to solve this problem are adding an artificial viscosity or 

applying a slope limiter. The artificial viscosity is a numerical parameter that is added to the 

discretized equations to stabilize the solution. This parameter should be tuned to be large 
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enough near a discontinuity to reduce oscillations, and small elsewhere to maintain high order 

accuracy. Since tuning this parameter is a problem dependent process, it is considered as a 

disadvantage. Upon using a slope limiter, the numerical slope is reduced or lower order 

interpolation is adopted near a discontinuity. One disadvantage of this approach is that the 

accuracy degenerates to first order near smooth extrema.  

Before explaining how the mentioned problems are treated in WENO method it is 

necessary to explain the idea adopted in ENO (Essentially Non-Oscillatory method). In fact 

ENO can be regarded as an earlier version of WENO. Spurious oscillations are prevented in 

ENO by performing high order approximation using the optimum stencil. This stencil should 

be selected among other possible stencils. For example the first order space partial derivative  

can be approximated as: 

 

‬όὪ

‬ὼ

όὪȾ όὪȾ

ɝὼ
ὕɝὼ  (4.13) 

 

The terms όὪȾ  and όὪȾ  are defined as the right and left fluxes at cell Ὥ. For a 

positive value of velocity ό the information travel from left to right. In this case όὪȾ can 

be approximated using any of the three point stencils Ὥ σȟὭ ρ , Ὥ ςȟὭ  and Ὥ ρȟὭ

ρ Ȣ In fact the three stencils are subsets form the larger stencil  Ὥ σȟὭ ρ that is shifted to 

the left (Fig.  4.2). 

 

Ὥ σ              Ὥ ς                       Ὥ ρ                 Ὥ                     Ὥ ρ             

Ὥ σȟὭ ρ 

όὪȾ  

Ὥ σȟὭ ρ Ὥ ρȟὭ ρ 

Ὥ ςȟὭ 

Fig.  4.2. The three possible stencils for upwind approximation of the flux at ░ Ⱦ  
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Among the three stencils, the stencil providing the smoothest approximation is chosen. 

This stencil is identified based on evaluating Newton differences used to approximate 

polynomials. The cell yielding a smaller absolute value for Newton difference is selected.  

The main concept behind ENO which is already mentioned briefly suffers the following 

disadvantage. Each of the three stencils discussed to approximate όὪȾ  provides a third 

order approximation. Generally the three stencils are checked to find the best choice. On the 

other hand using the wide stencil Ὥ σȟὭ ρ in which the three smaller stencils reside yields 

a higher order approximation ὕɝὼ  . In addition, using this wide stencil simplifies the logic 

of the numerical routine. Instead of using only one stencil, WENO method uses a weighted 

combination of the three stencils. In this way the wide stencil is exploited to yield higher 

accuracy. The weights allocated to the three stencils approximations are selected to prevent 

spurious oscillations. 

4.3.2 WENO algorithm 

In this subsection, details of the WENO fifth order method are presented. First, 

discretization in the horizontal direction is described. The simple extension of the method to 

multi-dimensions will be shown later. The convection term at grid point Ὥ is discretized as: 

 

‬όὪ

‬ὼ

όὪȾ όὪȾ

ɝὼ
ὕɝὼ  (4.14) 

 

In Eq. (4.14), όὪȾ presents the numerical flux to the left of point Ὥ. It is clear from Eq. 

(4.14) that the main goal is to calculate όὪȾ  for all cells. Two possible approximations 

exist for όὪȾ , which are labeled όὪȾ  (down-wind) and όὪȾ  (up-wind). όὪȾ  is 

obtained if the stencil Ὥ ςȟὭ ς is used, and όὪȾ  is obtained if the stencil Ὥ σȟὭ ρ 

is used (Fig.  4.3). The choice between όὪȾ and όὪȾ depends on the value of ό. First, 

both up- and down-wind equations are presented, then the criteria for each choice will be 

explained. 
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4.3.2.1 Down-wind approximation 

For the down-wind approximation, the flux όὪȾ is given by 

 

όὪȾ ‫όὪ 
(4.15) 

 

The terms that appear in Eq. (4.15) are calculated using Eq. (4.16) to Eq. (4.19): 
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Ὠ πȢρȟὨ πȢφȟὨ πȢσ (4.17) 
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(4.19) 

 

Ὥ σ              Ὥ ς                       Ὥ ρ                 Ὥ                     Ὥ ρ            Ὥ ς 

Ὥ σȟὭ ρ 

όὪȾ  

Ὥ ςȟὭ ς 

Fig.  4.3. Downwind and upwind stencils for the flux at ░ Ⱦ  
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Here, ‐ in Eq.(4.18a) is an arbitrarily small parameter to avoid division by zero. 

4.3.2.2 Up-wind approximation 

Similar to the down-wind case, the up-wind discretization is calculated according to: 

 

όὪȾ ‫όὪ (4.20) 

 

where the terms appearing in Eq. (4.20) are calculated according using Eq. (4.21) to Eq. 

(4.23). 
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Ὠ πȢσȟὨ πȢφȟὨ πȢρ (4.22) 

‌  (k=0,1,2) (4.23a) 
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4.3.2.3 Lax-Friedrichs splitting  

The choice between up-wind and down-wind is made to obtain entropy correct solutions. 

This process is labeled ñflux splittingò. In the present work, Lax-Friedrichs flux splitting is 

adopted as follows:  

 

όὪȾ

όὪȾ όǪό π

όὪȾ όǪό π

όὪȾ ÅÌÓÅ

 (4.24) 
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where όὪȾ is the sum of both the down-wind flux  of  όὪ ‌ὪȾς and the up-wind 

flux of  όὪ ‌ὪȾς, where  ‌ maxȿόȿ. More details about this split are given by Shu 

[1989]. 

4.3.2.4 Extension to two dimensions 

For the two dimensional case, Eq. (4.14) can be rewritten as: 

 

‬όὪ

‬ὼ
ȟ

‬ὺὪ

‬ώ
ȟ

ḙ
όὪȾȟ όὪȾȟ

ɝὼ

ὺὪȟ Ⱦ ὺὪȟ Ⱦ

ɝώ
 (4.25) 

 

It is important to note that the steps of computing the vertical and the horizontal fluxes 

are totally independent. In practice, the rectangular domain can be swept horizontally where 

the horizontal term ‬όὪȾ‬ὼ ȿȟ is computed. This step can be followed by another vertical 

sweep where the vertical term ‬ὺὪȾ‬ώ ȿȟ is computed and added to the already calculated 

terms. 

4.4 Test application  

The goal of this subsection is to investigate the performance of the three presented 

methods. To perform this goal the methods are used to solve the following one dimensional 

equation: 

‬Ὢ

‬ὸ
ὅ
‬Ὢ

‬ὼ
π (4.26) 

 

Where ὅ is a constant equal to ρπȢπ. Subject to the initial condition 

 

Ὢὼȟὸ π ὦὼ
ρ ρ ὼ ς
π ὩὰίὩ

 (4.27) 

 

It can be shown using the method of characteristics that the exact solution of this problem 

is 
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Ὢὼȟὸ ὦὼ ὅὸ (4.28) 

 

The initial condition which is (square wave) is translated to the right with the constant 

velocity ὅ. An important aspect of this problem is the existence of the sharp gradient.  

 

 

Fig.  4.4. Exact initial profile and final profiles of  █ at ◄ Ȣ (Case A). 

 

Since the exact solution of this problem is well known, the performance of the three 

methods in the presence of sharp gradients can be easily clarified. The numerical domain 

exists between π ὼ ρπ. Simulation is done for a maximum time of  πȢχ. Simulations are 

done using two cases. For case A ρφπ mesh points and ωππ time steps are used. For case B 

σςπ mesh points and ρψππ time steps are used. Results for case A are shown in Fig.  4.4. As 

expected the profile is translated to a total distance equal to χ.  

In Fig.  4.5 the results are shown for a smaller section of the domain (χȢυ ὼ ωȢυ) near 

the square wave. The results for case B are closer to the exact solution than those of case A. 

This is expected since a coarser grid is adopted for the last case. For both cases, CIP-CSL3 

and WENO5 results are smoother and sharper near the sharp edge, compared to the results of 

CIP. The spurious oscillations generated by CIP are totally avoided in CIP-CSL3 and WENO5 

results. Also both methods yield improved performance for the finer grid. 
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Fig.  4.5. Exact profile of █, along with the numerical solutions at ◄ Ȣ for cases A and B. 

 

4.5 Discussion 

After presenting the theory, algorithm and the results of CIP, CIP-CSL3 and WENO5, a 

discussion of the three methods should be useful. The aim of this discussion is to provide 

guidance about the applicability of those methods to the current model.  

It can be inferred that the main aim of the three discussed methods is providing a stable 

and high order numerical solution for the convection terms. The accuracy is accomplished 

using relatively high order approximation (third order for CIP and CIP-CSL3 and fifth order 

for WENO5). Special techniques are adopted to provide stable performance and avoid 

numerical problems of conventional finite difference techniques.  
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The results of section  4.4 clarify that CIP-CSL3 and WENO5 are more accurate than CIP. 

Both methods provide oscillation free solutions with a sharper gradient at the discontinuity. 

Consequently from a pure mathematical view WENO5 and CIP-CSL3 are better choices. 

However considering the choice for a practical numerical model CIP is a very competitive 

method. This is due to the fact that CIP was applied extensively to various fluid flow problems 

including single phase, multiphase, compressible and incompressible flows (Yabe, Takizawa, 

et al. 2005, Xiao and Yabe 2001). 

For CIP-CSL3 the situation is different. As already explained in subsection  4.2, the main 

target of CIP-CSL3 is solving the unsteady convection equation (Eq. 4.10) with a zero right 

hand side. Application of this method to a non-zero hand side equation (like Eq. 3.1b) is 

complicated. Incompressible flow simulation using CIP-CSL3 was done recently by Xiao, 

Akoh and Ii (2006) using special discretization method called VSIAM3. However it should be 

noted that VSIAM3 is a relatively new method and more studies are needed to assess its 

efficiency. 

A basic advantage of WENO5 compared to the other two methods, is that it can be 

applied with relative flexibility to various applications. The reason for this advantage is that 

unlike CIP and CIP-CSL3, WENO5 is applied to approximate the convection term itself 

(‬όὪ‬ὼϳ ) regardless of the equation. This is may be the main reason why WENO was 

widely applied to the various applications including compressible and incompressible flow 

mentioned by Shu (1998). Another advantage of WENO5 is that only the function values are 

needed to accomplish discretization. For CIP both the function values and space derivatives 

are required, and for CIP-CSL3 the function values and cell averages are required. 

Consequently the computation algorithm of WENO5 is less complicated and needs less 

computer memory. 
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5 MODEL OPTIMIZATION  

In chapter 3 the main aspects and logic of the current numerical model was presented. 

However the two modules related to the convection of momentum terms and free surface 

tracking were not presented. This chapter is dedicated to testing the performance of the 

methods described in Chapter  4 for these two modules. To organize ideas a separate section is 

allocated to study each module. 

5.1 Convection Terms Discretization 

It is already mentioned in section  4.5 that using CIP-CSL3 method to approximate the 

momentum terms of Navier Stokes equations has several disadvantages. This is why the 

current comparison will be limited to applying CIP and WENO methods to Eq. (3.1). 

5.1.1 CCUP 

The main feature of CCUP fluid solver is adopting CIP method to approximate the 

momentum terms in Eq. (3.1b) (Yoon and Yabe 1999, Kishev, Hu and Kashiwagi 2006). As 

already mentioned in subsection  4.1.2 a special non-advection step is needed to model the 

existence of non convection terms. However this step is performed in CCUP method in a way 

that is rather different than the algorithm described in subsection  4.1.2. This may be attributed 

to the existence of the pressure gradient terms in the right hand side of Eq. (3.1b). As already 

illustrated in section  3.2 the pressure should be computed using a methodology that satisfies 

Eq. (3.1a) (divergence free constraint) while being consistent with the discretization of Eq. 

(3.1b) (momentum equation). Performing this step using CIP is not a trivial task. This is due 

to the fact that the momentum terms described in section  3.2 (Ὄὓέά and ὠὓέά) are not 

calculated explicitly in CIP. To overcome this obstacle the following procedure is adopted in 

CCUP (Yoon and Yabe 1999, Kishev, Hu and Kashiwagi 2006).  

First a pure convection equation is solved, where only the advection terms are treated 

using the CIP method. In other words those equations should be solved: 
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The inputs of this step are ό ȟὺ ȟό ȟό ȟὺ   and ὺ  which are the 

velocities values and space partial derivatives calculated from the last step. Consequently the 

output are  όᶻȟὺᶻȟόᶻȟόᶻȟὺᶻ  and ὺᶻ. Output velocities from advection stage are used in the 

non-advection phase. This is done through solving the following equation: 
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It should be noted that the viscous terms (ὌὠὭίὧȟϳ
ᶻ  and ὠὠὭίὧȟ ϳ

ᶻ ) are calculated 

based on όᶻȟὺᶻ. Using the same methodology described in section  3.2 the pressure is obtained 

by solving the following poisson equation: 
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(5.3) 

 

The right hand side terms are defined as: 

 

ὌὙὌὛ ȟϳ
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ὠὙὌὛȟ ϳ
ᶻ ὺȟ ϳ

ᶻ ὠὠὭίὧȟ ϳ
ᶻ ɝὸ (5.4b) 

An important observation on CCUP algorithm related to the calculation of the velocity 

space partial derivatives όȟόȟὺ  and ὺ should be pointed. A major step in the original 

CIP algorithm is the non advection step presented in subsection  4.1.2.2. In this step the 

velocity space partial derivatives are updated according to Eq. (4.9b) and Eq. (4.9c). In these 

equations the velocity space variation and the non-advection (viscous) terms are incorporated. 

However in CCUP algorithm only the velocity values are updated using the viscous terms. As 

a result the viscous terms do not have a direct effect on όȟόȟὺ  and ὺ. In other words a 

discrepancy seems to exist between the calculation method of the partial derivatives in CIP 

method and the corresponding method in CCUP. This discrepancy may be a serious 

disadvantage, because the space derivatives play a major role in the concept of CIP.  In 

addition numerical instability may occur due to abrupt velocity changes near a fixed solid 

body. 

5.1.2 WENO5 

The momentum terms of Eq. (3.1b) can be discretized using WENO5 in a rather 

straightforward manner. The discrete term Ὄὓέά mentioned in Eq.(3.2a), is calculated by 

applying the WENO5 algorithm (subsection  4.3.2) to the horizontal momentum equation. 

Similarly ὠὓέά is calculated by applying this algorithm to the vertical momentum equation. 

The advantage of the simple application of WENO5 compared to CIP can be easily observed 

upon comparing the current methodology with CCUP. 

Sussman, Smereka and Osher (1994) and Sussman, Fatemi, et al. (1998) used ENO 

method which is an earlier version of WENO, to model incompressible flow. However both 

works adopted the projection method to eliminate the pressure terms in Eq. (3.1). Compared to 

MAC methodology the projection technique was less frequently applied by researchers. Choi, 

et al. (2007) modeled incompressible using WENO method and adopting the concept of 

artificial compressibility which is a tunable parameter. The present model is similar to the 

independent work of Zhang and Jackson (2009) where a tunable parameter is not used. The 
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work of and Zhang and Jackson (2009) was limited to single phase flow. The present 

application of WENO5 to model multiphase flow is a novelty of the current study.  

5.1.3 Test application 

In the present subsection the two methodologies described in subsections  5.1.1 and  5.1.2 

are tested by simulating the driven lid cavity problem. This problem which is characterized by 

a simple shaped domain includes various interesting phenomena. The relatively old work of 

Ghia, Ghia and Shin (1982) still serves as a good source for validation of this problem and 

was referenced recently by Bruneau and Saad (2006). The problem definition is shown in 

Fig.  5.1. Only the upper wall is given a constant unit horizontal velocity to the right and the 

other three walls are stationary. This motion induces a vortical motion in the square. This 

vortical motion is strongly dependent on Ὑ  (Reynolds number) as will be illustrated. 

Simulations are done adopting zero initial condition on the velocity. 

The main governing parameter for the driven lid cavity problem is Ὑ. In this subsection 

the results for two cases; A and B with Ὑ ρπππ and υπππ, respectively are presented. The 

numerical parameters for both cases are listed in Table  5.1. If central differencing is adopted 

the maximum numerical time step is (Fletcher 1991, 339): 

 

ɝὸ
τ

Ὑ ȿόȿ ȿὺȿ

τ

Ὑ
 (5.4b) 

 

 

Table  5.1. Numerical parameters for cases A and B. 

 Case A Case B 

Ὑ ρπππ υπππ 

Numerical Grid ρςπρςπ ςτπςτπ 
Maximum simulation time ρυπ 300 

Numerical time step ɝὸ υ ρπ  
CCUP WENO5 

σȢχυρπ  ςȢρτρπ  

Numerical time step upper limit τὙϳ  τ ρπ  ψ ρπ  
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The upper limit of τὙϳ   in Eq. (5.4) is deduced from the fact that ȿόȿ ȿὺȿ ρ at the 

upper boundary. The time step adopted for case B is about σ times bigger than this upper limit. 

This is an important reason for adopting special methods like CIP and WENO5 to 

approximate the momentum terms. 

 

 

 

 

   
Fig.  5.2. Profile of horizontal velocity ◊ at axis CD  
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The velocity results of the current model using CCUP and WENO5 are shown in Fig.  5.2 

and Fig.  5.3 compared with the numerical results of Ghia, Ghia and Shin (1982). For case B 

Ὑ is higher than case A. Consequently for case B the boundary layer thickness is smaller and 

the velocity gradient is higher near the wall. The results for CCUP and WENO5 based model 

are close to those of Ghia, Ghia and Shin (1982).  Streamlines plots for both cases are shown 

in Fig.  5.4. For case A two secondary vortices are formed at the lower left and right corners, in 

addition to the primary vortex near the square center. For case B an extra vortex is created at 

the upper left corner, in addition to the three vortices existing for case A. These results are 

consistent with the works of Ghia, Ghia and Shin (1982) and Bruneau and Saad (2006). 

 

    
Fig.  5.3. Profile of vertical velocity ○ at axis AB 

 

In Table  5.2 the values of the stream function evaluated at the center of the primary 

vortex is shown. The results of Bruneau and Saad (2006) are shown for comparison.  

 

Table  5.2. Minimum value of stream function at the primary vortex 

Ὑ ρπππ υπππ 

Bruneau and Saad (2006) -πȢρρψως πȢρςρωχ 

CCUP πȢρρσυψ   υȢστρπ  πȢρρρτς   ρȢπυυρπ  

WENO5 based solver πȢρρυψσ   σȢπωρπ  πȢρςςχρ  χȢτ ρπ  
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The results of Bruneau and Saad (2006) were calculated using third order discretization 

of the convection terms and fine grids (ρπςτρπςτ for Ὑ ρπππ and ςπτψςπτψ for 

Ὑ υπππ). In addition, they verified their results by comparison with other various works. 

Consequently the results of Bruneau and Saad (2006) should be rather accuarte. The 

difference between the results of CCUP and WENO based models and those of Bruneau and 

Saad (2006) are shown in brackets. For both values of Ὑ The results of the WENO5 based 

model are more accurate than the results of CCUP. 

Case A 

 
CCUP 

 
WENO5 based 

Case B 

 
CCUP 

 
WENO5 based 

Fig.  5.4 Stream lines for Cases A and B 
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5.2 Free surface capturing algorithm 

In the current work, multiphase flow is modeled using the level set method, where liquid 

and gas regions are identified using the color function ‰. Two forms of ‰ exist in the 

literature. One discontinuous form (‰ ) is generated by assigning ‰ a value of one and zero 

in liquid and gas regions, respectively. Another continuous form (‰ ) results upon equating ‰ 

to the distance from the gas-liquid interface. Both forms are compared in Fig.  5.5 where a 

liquid drop surrounded by gas is illustrated. For both forms, the time variation of ‰ is 

governed by: 

 

‬‰

‬ὸ
Ͻɳ╥‰ π (5.5) 

 

where ╥ όȟὺ is the fluid velocity vector.  

  

Fig.  5.5. Representation of a liquid drop surrounded by a gas, left is the discontinuous form and right 

is the continuous distance formulation 

 

 
Fig.  5.6. Typical form of   distance function (left) and the discontinuous color function near the gas 

liquid interface. 
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For an incompressible fluid, the fluid properties of interest are the density ” and the 

viscosity ‘. These properties are calculated using Eq. (5.6): 

 

” ”‰ ” ρ ‰        ‘ ‘‰ ‘ ρ ‰  (5.6) 

 

where ‘, ”, ‘  and ”  are the dynamic viscosities and densities of liquid and gas, 

respectively. 

 

 

 

 

‰  is computed from ‰  or ‰  using Eq.(5.7).  

Step 1a: Obtain ‰  using algorithm 

described in this section 

Step 1b: Evaluate ” and ‘ using Eq. (5.6) 

Step 1c: Evaluate ὌὙὌὛ ȟϳ  and 

ὠὙὌὛȟ ϳ  using Eq. (3.4) 

Step 2: Solve Eq. (3.6) (PPE) for ὖȟ  

Step 3: evaluate ό ȟϳ  and ὺȟ ϳ  by 

substitution in Eq. (3.3) 

Step 4: Update flow variables 

Maximum simulation 

time reached? 

NO 

     End 

Yes 

Fig.  5.7. Numerical model flow chart showing the role of interface capturing algorithm 
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‰

 
π ὭὪ ‰ ‭
ρ  ὭὪ ‰ ρ ‭
‰ ὩὰίὩ

 

 (5.7a) 

‰

π ὭὪ ‰ ‏
ρ ὭὪ ‰ ‏

πȢυρ ίὭὲ
“‰

ς‏
 ὩὰίὩ

 (5.7b) 

 

 is an arbitrarily small parameter selected as 0.05 in the present work. On the other hand צ

 :is calculated from Eq.(5.8) using the grid size ȹ (Sussman, Smereka and Osher 1994) ‏

 

‏
‰ ‰

ς
ρȢυῳ    (5.8) 

 

In Fig.  5.6 both formulations are illustrated near the gas-liquid interface. The present 

algorithm is incorporated in the numerical model as illustrated in Fig.  5.7. It should be noted 

that this flow chart is an extended version of the one shown in chapter  3. Considering Fig.  5.6, 

Eq. (5.6), (5.7) and (5.8) the following notes should be mentioned. 

   A major drawback of ‰  presentation is the uncontrolled thickness of the gas-liquid 

interface region, due to the sharp transition from π to ρ. To obtain accurate results this 

thickness should not exceed ȹ . However it may be difficult to achieve this criterion in 

practice due to numerical errors upon solving Eq. (5.5). On the other hand when ‰  is used, 

re-initialization is required (Sussman, Fatemi and Smereka, et al. 1998, Sussman and Fatemi 

1999).  Re-initialization consumes extra time, but assures that the slope of ‰  is kept equal to 

unity. Also careful re-initialization does not change the interface place (intersection between 

‰  and zero level) and ensures mass conservation. 

5.2.1 Re-Initialization  

The re-initialization comprises solving Eq. (5.9), subject to the initial condition of Eq. 

(5.10). 
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‬‰

‬†
ÓÉÇÎ‰ ρ ȿɳ‰ȿ

᷿ ( ‰
‬‰
‬ὸɋ

᷿ ( ‰ Æ‰
ɋ

( ‰ ȿɳ‰ȿ (5.9) 

‰ ὼȟ† π ‰  (5.10) 

 

In Eq. (5.9) and Eq. (5.10) ‰  is the re-initialized distance function; ‰  is the result of 

solving Eq. (5.5) by WENO and ‰  is the intermediate value computed upon solving Eq. 

(5.9). The functions appearing in Eq. (5.10) are defined numerically as (Sussman, Fatemi and 

Smereka, et al. 1998): 

 

Ὄ‰

ρ ὭὪ ‰ ȹ

π ὭὪ ‰ ȹ

ρ

ς
ρ
‰

ȹ

ρ

“
ÓÉÎ
“‰

ȹ
έὸὬὩὶύὭίὩ

 

Ὄǋ‰

π ὭὪ ‰ ȹ

π ὭὪ ‰ ȹ

ρ

ς

ρ

ȹ

ρ

ȹ
ÃÏÓ

“‰

ȹ
έὸὬὩὶύὭίὩ

 

(5.11) 

 

where ȹ is the grid spacing. In the present work ȹ is taken as the άὥὼ ɝὼȟɝώ. A major 

task upon solving Eq. (5.9) is providing a stable space discretization for ȿɳ‰ȿ. Such term can 

be discretized using a first order or second order space approximation. The first order 

approximation is (Osher and Fedkiw 2002, 58): 

 

‬‰

‬ὼȟ

ÍÁØ ÍÁØ ‰ȟπ ȟÍÉÎ ‰ȟπ ὭὪ ‰ȟ π

ÍÁØ ÍÉÎ ‰ȟπ ȟÍÁØ ‰ȟπ ὭὪ ‰ȟ π
 (5.12) 

 

where ‰  and ‰  are defined as: 

 

‰
‰ȟ ‰ ȟ

ȹØ
ȟ‰

‰ ȟ ‰ȟ

ȹØ
 (5.13) 
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The second order approximation is (Sussman, Fatemi and Smereka, et al. 1998): 

 

Ὠȟ
‰ ȟ ‰ȟ

ȹØ
ȟὥ

‰ ȟ ς‰ȟ ‰ ȟ

ȹØ
ȟ  

ὦ
‰ȟ ς‰ ȟ ‰ ȟ

ȹØ
ȟὧ

ὥ ὭὪ ȿὥȿ ȿὦȿ

ὦ έὸὬὩὶύὭίὩ
ȟ  

 Ὠȟ Ὠȟ
ȹØ

ς
ὧςὯ Ὥ ρȟ

 Ὠ  Ὠȟ ὭὪ Ὧ Ὥ ρ

 Ὠ  Ὠȟ έὸὬὩὶύὭίὩ
 

(5.14) 

 

Eq (5.14) should be repeated two times for Ὧ Ὥ ρ and Ὧ Ὥ. Finally the partial 

derivative in ὼ direction is calculated from 

 

‬‰

‬ὼȟ

ừ
ỬỬ
Ừ

ỬỬ
ứ
 Ὠ ὭὪ ὨίὭὫὲ‰ π ὥὲὨ ὨίὭὫὲ‰ ὨίὭὫὲ‰

 Ὠ ὭὪ ὨίὭὫὲ‰ π ὥὲὨ ὨίὭὫὲ‰ ὨίὭὫὲ‰

 Ὠ  Ὠ

ς
ὭὪ ὨίὭὫὲ‰ π ὥὲὨ ὨίὭὫὲ‰ π

ίὭὫὲ‰ ςὌ‰
ρ

ς

 

(5.15) 

 

Partial derivative in y direction can be obtained similarly. Sussman, Fatemi and Smereka, 

et al. (1998) suggested using ENO 2
nd

 order method to obtain substantial improvement. In the 

present work the second order method is used at internal nodes. However at the boundary 

nodes Eq. (5.12) is used due to its relatively narrow stencil. Time integration of Eq. (5.9) is 

done on two steps. At first a second order Euler time integration is done  
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‰ ‰ ɝʐÓÉÇÎ‰ ρ ‰ɳ ȟ‰ ‰ ɝʐÓÉÇÎ‰ ρ ȿɳ‰ȿȟ 

‰
‰ ‰

ς
 

(5.16) 

 

Then the mass conservation term is added 

 

‰ ‰ ῳ†
᷿ Ὄ ‰

‬‰
‬ὸ

᷿ Ὄ ‰ Ὢ‰
Ὄ ‰ ​‰  (5.17) 

 

The integral terms in Eq. (5.17) are calculated as (Sussman, Fatemi and Smereka, et al. 

1998):  

Ὣ
ɝɝ

ςτ
ρφὫȟ Ὣ ȟ

ȟ Ƞ Ȣ ȟ

 (5.18) 

 

In the present work Eq. (5.9) is advanced for 3 steps, with  ῳ† άὭὲ ῳὼȟῳώȾς. 

5.2.2 Test application 

In this section results from applying different choices are shown. Theoretically six 

choices are possible, because three discretization methods were presented (CIP, CIP-CSL3 

and WENO5) and two forms for ‰ are possible (‰  and  ‰ ). However only three 

combinations are presented: ‰ with CIP-CSL3 (CSL3-SHRP), ‰with WENO5 (WENO-

DST) and finally ‰  with CIP-CSL3 (CSL3-DST). These choices are motivated by the 

following reasons. CSL3-SHRP and WENO-DST were applied widely. Consequently upon 

comparing these two options useful conclusions leading to model enhancement are expected. 

Another choice that was applied widely (Yoon and Yabe 1999, Zhu 2006) is CIP method 

combined with ‰  (CIP-SHRP). However CIP-SHRP combination suffers the following 

disadvantages. It was illustrated in section  4.4 that the CIP method yields relatively inaccurate 
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results including spurious oscillations near a sharp discontinuity. This feature is important 

since ‰  presentation is discontinuous at the liquid gas interface. In addition, the thickness 

of the original sharp interface increases due to relatively higher diffusion. The following 

procedure was adopted to improve CIP-SHRP results (Yoon and Yabe 1999, Yabe and Xiao 

1993, Yabe, Xiao and Utsumi 2001).  Instead of solving Eq. (5.5) the following variation is 

adopted 

 

‬Ὂ

‬ὸ
Ͻɳ╥Ὂ π (5.19) 

Ὂ ὸὥὲπȢωω“‰ πȢυ  (5.20) 

‰
ÔÁÎὊ

πȢωω“
πȢυ (5.21) 

 

The motivation for adopting this transformation is that the abrupt variation of ‰ from π to 

ρ corresponds to a relatively gradual variation of Ὂ . Consequently the artificial diffusion and 

oscillations in Ὂ  are reduced upon transforming back to ‰ (Yabe and Xiao 1993). However 

Zhu (2006) reported that a disadvantage of this transformation is that the originally smooth 

free surface may become a stepwise function. Instead he suggested adopting the following 

transformation: 

 

Ὂ πȢυ ρȢς‰ πȢυ (5.22) 

‰ πȢυ
Ὂ πȢυ

ρȢς
 (5.23) 

 

On the other hand this transformation is less wide spread than the tangent transformation. As a 

conclusion upon studying the current literature, the optimum transformation formula is not 

clear. Since major difficulties emerge upon adopting CIP-SHRP consequently this option will 

not be considered in this section. 



58 

 

Since the results of CIP-CSL3 are more accurate than CIP (section  4.4), and since 

adopting ‰  the difficulties of the sharp profile of ‰  are avoided, the new option examined 

in the present study is CSL3-DST. In order to maintain consistency, after ‰  is obtained from 

the algorithm listed in subsection  5.2.1, the surface average values used in CIP-CSL3 are 

updated using TEC formula. In all cases CCUP method is used to solve the incompressible 

flow equations. The three options are tested against the benchmark dam-break problem.  

 

 
Fig.  5.8. Dam break problem configuration 

 

 

     
 

Fig.  5.9. Front Position versus dimensionless time, left is case 1 and right  is case 2 
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In the dam break problem a column of water is initially held behind a barrier. The barrier 

is suddenly removed and the water column collapses and flows under gravity (see Fig.  5.8). 

No slip boundary conditions are applied at left and lower boundaries. For right and upper 

boundaries, extrapolation boundary conditions are applied to the velocities. This problem 

depends on the following parameters: Ὑ Ὗ ὒȾ‡ , ‘ ‘ ‘ϳ , ” ” ”ϳ , where, 

‘  and ”  are the water gas viscosity and density ratios, respectively. The characteristic 

velocity Ὗ  is given by ςὫὒ. The characteristic length and time are taken as ὒ and 

ὒȾςὫ, respectively. 

 

 
Fig.  5.10. Free surface profile at ◄ ȟȢ ȟȢ  and Ȣ  for case 1 using CSL3-SHRP  
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The problem is calculated for two cases. For both cases ‘ υφȢπτ  and ” ψσρȢχ. 

For case 1 and case 2, Ὑ is equated to φ ρπ and ρȢτσρπ, respectively. The values are 

taken to be consistent with the experiment done by Martin and Moyce (1952). Although such 

measurements are old, they are still used for validation by modern works (Xiao and Ikebata 

2003, Marchandise and Remacle 2006). For case 1, the adopted grid size is ρυπρςυ 

divisions in the horizontal and vertical directions respectively. For case 2, ρψπρυπ 

divisions are used. The numerical time steps are ςπȟπππ and ςυȟπππ to reach ὸ τȢπ for 

case 1 and case 2, respectively. 

 

 
Fig.  5.11. Free surface profile at ◄ ȟȢ ȟȢ  and Ȣ  for case 1 using CSL3-DST 

 

Fig.  5.9 shows the calculations of water front location by the three combinations, along 

with measurements of Martin and Moyce (1952). For case 1, deviation between simulation 
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and measurements increases with time. For case 2, the agreement between simulation and 

measurement is better. The same observation was made by Kelecy and Pletcher (1997) upon 

comparing the results of their simulations with the measurements of Martin and Moyce 

(1952). The three combinations yield very close results in terms of the front position. 

 

 
Fig.  5.12. Free surface profile at ◄ ȟȢ ȟȢ  and Ȣ  for case 1 using WENO-DST 

 

Fig.  5.10, Fig.  5.11 and Fig.  5.12 show the free surface profile for case 1 at four instants 

using the three combinations. The surface profile is marked by the value of ‰ πȢυ. The 

contour plots extend from ‰ πȢπυ ὸέ πȢωυ.  The surface profile resulting from CSL3-

SHRP is relatively irregular. Initially CSL3-SHRP yields a very narrow interface thickness. 

However the interface thickness increases with time irregularly. In contrast the interface 

thickness for CSL3-DST and WENO-DST is rather regular and constant with time. It is clear 


























































































































