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ABSTRACT

Numerical wave tanks are very efficient tools for coastal engineering design. They can
provide relatively accurate predictions for various phenomena including wave generation,
propagation, and interaction with structures. The two main diffesilthat are faced upon
developing this type of models are modeling strong free surface deformation, and modeling
convection dominated viscous flow. Thalgorithms suggested for treating these two
difficulties suffer from inaccurate simplifications, or atiog rather arduous methodologies.

A possible methodology to circumvent this difficulty is developing a model based on
relatively accurate discretization methods.

In the present work CIP, CIeSL3 and WENO5 accurate methods are tested and
compared with tB aim of providing the optimum performance taking the two mentioned
difficulties into account. It is found that the model adopting WENO5 method for both the free
surface capturing algorithm, and discretization of the flow convection terms yields the most
accurate and stable results among other efficient options.

This model is extensively validatday simulationof wave propagation over arbitrary
shaped bodieslhe modelprovidesaccurate results using relatively coarse and simple.grids
Also turbulent flowis simulatedvithout using an explicit turbulence modélhe results of the
flow field in both the water and thedr phase are validated via comparison with the analytical
formulas for internal wave. The results of the free surface location predictbeé bglatively
simple level set method are shown to be as accurate as those obtained using VOF method.

The model is applied to model wave propagation over semicircular structures. Various
aspects of the problems are investigated numerically and experipelta illustrated that
the wave force in the wave propagation direction is considerably less than the wave force in
the opposite direction. Also the model is applied to study generation and propagation of
tsunami waves generated by a solid landslidee Thumerical results of this relatively
complicated problem agree well with teeperimentameasurements.

The most important contribution of this work is the ability of modeling various complex

phenomena accurately using a rather simple methodology.
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1 INTRODUCTION

1.1 Background and Motivation

1.1.1 Role of models in coastal management and design

Since about 38 percent of the worlddés po
coastlines are the worldds most I mportant ai
(Kay and Alder 2005)This fact directs special attém to coastal management which is a
multidisciplinary field that includes environmental, social and political asg&asphuis
2000) Coastal engineering design is an important topic in this field whose aim is providing
the kest product taking various requirements into consideration.

Kamphuis (2000) classified coastal engineering design into three main tools; field
measurements, knowledge (based on theory and experience), and models (physical or
numerical). Beside being diffiit and expensive to obta{iamphuis 200Q)field studies are
generally not sufficient to discern the coastalcpssegReeve, Chadwick and Fleming 2004)
Kamphuis (2000) mentioned that knowledge based on theory and experience is a reliable
design tool. However he pointed out that experience mustroéy coastal experience, which
sometimes can be obtained only from project sites. This option may bailabavin many
cases.

Physical and numerical models provide an efficient design tool. Unlike the other two
options, design modifications can be studied easily using physical and numerical models.
Consequently, using models along with a process of miglearor, a design with a relatively
low factor of safety can be achieved.

Compared to physical models and laboratory tests, numerical models are more economic
in terms of the required working space and facilities, operating costs and technical staff
(Kamphuis 2000) This is why the main scope of this thesis is the design of a numerical

model.



1.1.2 Importance of numerical wave tank models

Engineers build various types of structures in the seas and near coastal areas. The diverse
motivations for these projects include facilitating access to harbors and ports, protection of
shore areas against high waves and providing suitable recreational beach areas. To meet these
diverse requirements various types of structures are designed igclgdawalls and
breakwaterdReeve, Chadwick and Fleming 200/mong diverse phenomena (including
winds, tidal currents and earthquakes) waves exercise the greatest influence on maritime
structureGoda1985) In fact waves are one of the most complex phenomena in the nature.
Thus, the design of various coastal structures considering wave action is a challenging task.
Wave tanks can be used to study various wave phenomena including wave generation,
reflection transmission, shoaling and nonlinear deformation doevariable bottom
bathymetry, rurup, overtopping and forces on structufékighes 1993)Consequently wave
tanks serve as valuable design tools.

Compared to araditional physical wave tank (PWT), a numerical wave tank (NWT)
possesses the following advantages:

1. In an NWT wave flow field can be obtained at any grid point. While for a PWT
information will be limited to those provided by sensors or visual obsergadton
specific placesConsequently an NWT provides more complete images about
problems under study.

2. PWT always have practical limitations due to dimensions and installed
equipment. These limitations decrease the range of applicability of a PWT. This
disadwantage can be clarified considering the wave maker component. Although
almost all wave makers can generate periodic waves, the option of generating
solitary waves is not available in many PWTs. On the contrary, various test
conditions can be included MWT in a relatively flexible manner. Consequently
NWT can be used to study a wide range of problems.

3. In addition to being more economic than a PWT in terms of cost, NWT can
effectively reduce time and effort requirements. For example considerable time
and effort are needed to fabricate a model for a coastal structure (using wood or

concrete) to be used in a physical tank. However incorporating the same structure



into a NWT can be done with less time and negligible effort once the appropriate
methodology isinderstood. While modifying the geometry of the PWT version of
this structure may consume several working hours, the NWT version of this

structure can be modified by changing some code lines.

1.1.3 Main challenges of developing NWT

A conclusion to be drawn fronthe advantages mentioned is that NWT is a very
promising tool for researchers and engineers. As a result numerous studies exist related to the
task of developing this important tool. However, upon developing NWT, knowledge related to
wave theory, fluid mdtanics, numerical methods and the relevant engineering applications is
requested. In order to fulfill this relatively complicated task various approaches were adopted
by researchers. Numerous NWTs based on frictionless, weakly deformed free surface flow
asumptions were presented in the literature. However due to the continuous progress of
scientific knowledge and computational capacity, numerical models are expected to provide
more accurate results for more complex situatidsa resultrelatively recetly developed
NWTs include viscous effects along with strong free surface deformations induced near
structures or rapid varying bathymetry. An efficient way to accomplish this task is modeling
both air and water phases simultaneously in the same proWém.an increasing concern
about coastal environment and the high value of structures, an approach that casdtiandle
shapes witharbitrary geometry is extremely valuab@onsequently the existence of arbitrary

solid bodies should be modeled by incogiomg a solid phase in the domain.

1.2 Objectives and Scope
The main objective of this study is developing a NWT for modeling practical coastal
engineering problems. To accomplish this goal the following secondary objectives should be
accomplished:
1. The currentliterature should bereviewed in order to identify the effective and
efficient techniques adopted by others researchers to achiesartbetgoal. The
importantgoalsto beachievedn this stage are pointing out the main difficulties

that are faced upodeveloping NWT, and how these difficulties were treated.



Although various applications can be studied using NWT, the current study main
goal is to study wave propagation in the presence of a solid obstacle. The main
difficulty related to this problem imodeling convection dominated flows in the
presence of strong free surface deformations. The output of this stage is defining a
preliminary model with an expected satisfactory performance related to this
aspect.

. Upon selecting a specific methodology gooierstanding should be developed

for this choice. Special attention should be allocated to studying relatively new
methods which are expected to yield better results. Upon exploiting these methods
the disadvantages of the models developed in the past eagffisiently
circumvented. Special attentighould be directedo investigate the relatively
recent high order discretization schem@&bhese methodare expected to yield
accurate results using unifor@artesiargrids.

Model refinement based on comparititge performance of different methods
emphasized in step 2 should be done. The aim of this step is finding the optimum
model which can be used with confidence to model various applications.

. The model developed in step 3 should be validated by simulatingusawell
documented wave propagation problems. In addition the developed model results
should be compared to those of already developed models to judge the existence
of improvements.

Finally the capabilities of the developed model regarding modelioglligas and

solid phases should be further illustrated. The ability of the developed model to
model new phenomena is investigated through modeling problems of practical

importance.



2 LITERATURE REVIEW

2.1 Background on NWT Studies

The subject of this work is developing a general purpose numerical model, for water
waves including arbitrary shaped moving and stationary obstacles, termed as numerical wave
tank (NWT). Such model shoulde areliable alternative for a physical flume. Narous
studies were done related to the same goal. Upon reviewing these studies it can be concluded
that two main difficulties are faced upon developing NWT.

The first difficulty is modeling the moving boundary at the water free su(faceg and
Huang 2004) In fact the location of this boundary is a part of the solution jtselbe
determined after solving the problem. Consequently modeling the presence of this surface is a
complicated task.

The second difficulty is rated to modeling viscous flow which is mainly characterized
by the Reynolds number. This dimensionless number can be defined as a force ratio between
inertial and viscous terms affecting a fluid elem@day and Neddermani985, 138) For
viscous flows of large values of Reynolds number, the flow becao®gection dominated
For this class of problems careful numerical discretization of the convection terms of the flow
equations is needed to avaidnphysical oscillationgFletcher 1991, 345) In addition, for
the values of Reynolds number of interest the flow is generally turb@ean and
Dalrymple 1984, 213)Numericalmodeling of turbulent flow is a relatively complicated task,
which is generally done using special subdels.

In the present chapter a literature review for the studies related to developing a NWT is
presented. Reviewing this huge amount of studies d#f@ult task. This process can be
facilitated if the two difficulties mentioneaboveare taken into consideration. A starting point
is categorizing NWT studies into the two main groups mentiondddog and Huang (2004)

The first group adopts the pote frictionless flow assumption, while the second group
adopts the viscous flow assumption. In this chapter each group is reviewed taking into account

the two difficulties mentioned.



2.2 Potential Flow NWT

The works ofGrilli and Watts (2005), Koo and Kim @®4), Yuan and Tao (2003),
Cooker, et al. (1990) are examplesagiotential NWT. In these studies various applications
were presented including wave generation due to moving obstacles and wave propgation over
submerged obstacles. It is important to ndtat tupon negelecting viscous effects the
difficulties mentioned related to modeling high Reynolds numbersflow totally avoided. It
should be also noted that in these studies the flow equations are &wltkd water phase
only. The noHdinear free stace boundary condition is included in the numerical model.
Consequently waves of relatively high amplitude can be mod€ledker, et al. 1990, Yuan
and Tao 2003)Another feature of NWT based on the iniviscid patrftow assumption is
that the flow is goverend by Laplace equat{@ong and Huang 2004)Consequently the
compuational requirements of these models are relatively redidedidy, et al. 2005)

However an important limitaion on these models is that numerical instability is
encountered upon the occurrence of a highly defrormed free surface of high curvature or slope
(Cooker, et al. 1990, Helluy, et al. 200%)ne of the few works where this problem was
considered is the study of Yuan and Tao (2003). They introduced a tunable artificial viscosity
term in thér potentialmodel. The fact that this tunable parameter plays a main role in their
model may be theeasorfor the limited applicabiliy of this method.

Another disadvantage of this group of works is the limitation of the potential flow
assumption regarding modeling separated flow and vortices in the wake of an diacle
and Dalrymple 1984, 213)This limitation was clarified by Zhuang and Lee (1996) who
provided numerical results for wave propagation over a rectangular obstacle using both
visocus and potential models. They compared these resultexypdrimental measurements
and illustrated that in the separated wake zone of the obstacle, the error in flow velocities
calculated by the potential flow model is rather Hige localized rotational and dissipative
vortices in the wake of anbstacle havea definite impact on the mixing process, sediment
transport and scouring process for real applicat{@mang, Hsu and Liu 2001)

A conclusion to be drawn from this discussion is that using a potential flow NWT is a
relatively inefficient option. This is specially important when practical applications where

viscous flow plays an important rokere considered.



2.3 Viscous Flow NWT

Viscous flow NWTs were implemented using different methodologies. A group of
viscous NWT studies can é& categorized as single phase models. In these studies the
numerical solution is limited to the liquid phase. The studiedhofang and Lee (1996) and
Tang and Chang (1998glong to this group. Both studies focused on modeling the separated
flow field behnd an obstacle. However, the free surface was tracked indirectly; using the
potential flow solution(Zhuang and Lee 1996pr adopting a moving curvilinear gr{dang
and Chang 1998)Consequentlytheir results were limited to relatively simple free surface
deformations induced by small sized obstacles.

Another important group of studies focusing on a viscous NWT are the studiesuod,
Zhang and Lee (1998), Huang and Dong (2001), and Donddaadg (2004) An important
aspect of these studies is that the free surface was tracked directly usinQdrieslargrids
while including the viscous effects in the whole domain. The free surface was presented as a
single valued height function. At thlecation indicated by this function the free surface
boundary conditions are imposed. A disadvantage of ghigedureis the difficulty of
modelinga complicated free surface for which the height function will become multi valued
(Fig. 2.1). Consequently the applications presentedHbgng, Zhang and Lee (1998), Huang
and Dong (2001), and Dong and Huang (2004) were limited to relatively low induced free

surface deformation.

Single valuedheight function e -
l Multi valuedheight function

Fig. 2.1. Disadvantage of height function formulation fora complex free surface

Discretization of the incompressible viscous flow equations was done in these three
studies using the finite analytic method. Compared to other discretization methods (e.qg. finite
difference and finite volume) the finite analytic method application istivelg limited.
Although Huang, Zhang and Lee (1998) dedicated a considerable space to explain this

method, they did not clarify the advantage of this method over other widely applied methods.



Finaly it should be noted that in these three studies the gonsblrelated to modeling
convection dominated and high Reynolds number flows were not considered.

2.3.1 Multiphase models

A relatively efficient group of NWT studies are based on the methods originally
developed to model general multiphase flows. The reasonhisrefficiency is that the
multiphase models are mainly designed to simulate complex free surface motion.
Consequently enhanced performance is expected considering the first difficulty mentioned in
section2.1

Three relatively important NWTs that belong to this groupfaf@ O B R AL @nd Liu
1998) VGFbreako (Troch and DeRouk 1999, Troch anBe-Rouk 1998)and A CADMAS
S U R Klsobe, et al. 1999, Interim development committee of a numerical wave flume for
Maritime structure design 20Q1Yhese three models can provide reliable results for a
relatively wide range of problems. Consequently more explanation should be provided for

each of these models.

2.3.1.1 COBRAS

An important feature of this model is its ability of modeling both highly deformed free
surfaces and convection dominated problems. However it shoelchoted that upon
developing this modeLin and Liu (1998)followed closely a computer program called
RIPPLE developed b¥othe, Mjolsness and Torrey (1991Although Lin and Liu (1998)
mentioned that they modified RIPPLE code to improve its accuraeydétails of these

modifications were not provided in any accessible reference.

2.3.1.1.1 Free surface tracking in COBRAS

The free surface is tracked in COBRAS using VOF method adopted in RIPPLE code.
This method was applied to a variety of multiphase flow problemstiding droplets
formation, mold filling and surface wavéScardovelli and Zaleski 1999, Kothe, Juric, et al.
1998) A cruci al step in VOF al gor i(Scdrdovelli and f r ee
Zaleski 1999, Pilliod and Puckett 200Zhis step is not simplgSethian and Smereka 2003)
In the reconstruction scheme of the version of \flodposed birt and Nichos (1981)used



in RIPPLE (thus iInCOBRAYS) the reconstructed interface is made up of a sequence of
segmentsligned with the grideither vertical or horizontal). This schenserelativelycrude,
and its advectiorven with simple velocity fields such &xanslations osolid body rotations

generates a large amountaofificial drops and bubblgScardovelli and Zaleski 1999)

2.3.1.1.2 Modeling convection dominated viscous flow in COBRAS

Convection terms are discretized in RIPPLE gsithe second order Van Leer
approximation. This method is expected to suppressntimphysical oscillationsalready
mentioned in sectioB.1 However ageneral dsadvantage of this relatively low order method
compared to higher order methods inducing excessive numerical diffusioteading to
premature deformation and dissipation of flow vorti¢e&aterinaris 2005)As a result
extremely fine grid resolutiormay be requiredo accurately describe vortical flow fields.
Consequenthynonruniform gridsare adopted in COBRAS where finer grids are placed only
where high gradients are expected.

Several complications arise upon adoptingaauniform grid: first, separateeffort is
needed for careful grid generati@and mathematical analysis t¢fansforned equations;
second, special care should be taken regarthiegnumerical cell aspect ratiecause ery
small orlargevalues for the hazontal vertical grid division ratio lead to numerical problems
(Ferziger and Peric 2002, 133jnally, determination of the places where extra resolution is
needed may be difficult for problems of wave propagationr obstacles. This is because
vortices and highly deformed free surfageay occur simultaneously. For this case effective
nontuniform grid generatiomwill be a challenging task

A natural choice for modeling high Reynolds number turbulent flow is usihgoa
equation model, in which two partial differential equations should be solved for the turbulence
guantities. Those equations supplement the flow equations. Hence considerable effort is
needed upon adopting this choice. The] model is the most widelysed turbulence model
belonging to tweequation model¢Pope 2000, 373)n COBRAS a relatively complicated
version of the’Q | turbulence model is adopted. This may be the main contribution
presented byin and Liu (1998) upon developing COBRA®is turbulence model is based

on the nonlinear model developbg Shih, Zhu and Lumley1996) However,Lin and Liu



(1998) did not clarify the reason fochoosingthis model among other various models
including@ 1 (Wilcox 2002)anduc Q(Ferziger and Peric 2002)

Instead of using Van Leer second order accurate method, the turbulence equations are
discretized via a first order accurate methiad.and Liu (1998) did not explain the reason for

this option which may deteriorate the overall accuracy of their solver.

2.3.1.2 VOFbreak?

An important common feature between VOFbfemkd COBRAS is that both models are
based on existing codeBroch and DeRouk (1998)reported that/OFbreak was developed
based on the original SOLXOF code designed bMichols, Hirt and Hotchkis$1980) In
fact the same version of VOlsed in COBRAS is adopted in this mad&he convection
terms are approximated using alternating edoorderi first order accuracy as described by
Hirt and Nichols(1981) Consequently the same disadvantagésted to VOF and low order
methodsexplained for COBRASare expected for VOFbreakin addition Troch and De
Rouk(1998)did not emphasis modalj turbulent flow usingy OFbreak.

2.3.1.3 CADMAS-SURF

The fact that COBRAS and VOFbréakodelswere developethased on existing cogde
provides evidence that considerable effort is needed to develop a similar model from scratch.
This may be the main reason why a cooperative research group has been tasked with the
project of developing CADMASSURF model for three fiscal yeaftsobe, et al. 1999)
Although the same methodology of NASAOF model was adoptedievelopingthe model
from scratch may have allowed some improvements. For example the convection terms are
discretized using QUICK method developed lsorard (1979) This method which has a
third order truncation error converges in a second order m@raeziger and Peric 2002, 79)
An ordinary high Reynolds numb& | model is used irCADMAS-SUREF It should be
noted hatthe same version of VOF used in COBRAS and VOFBrisaksed in CADMAS
SURF.

10



2.3.1.4 Remarks on COBRAS and CADMASSURF

The two different versions of th&® 7 turbulence model used in COBRAS and
CADMAS-SUREF include complications regarding boundary conditions. Proper conditions to
be applied near walls are not known due to the unknown behavior oftgdoukent quantities
near a wallFerziger and Peric 2002, 301sing the wall function concept is suggested as a
remedy (Pope 2000, Wilcox 2002, Ferziger and Peric 2002, Chung 200@¢re the
conditions onQand] are specified using special functions. In this method the boundary
values depend on the distance from the wall and the local wall shear stress. For such
complicated conditions to be valid, the first numerical grid point should be close enough to the
wall (Ferziger and Peric 2002, 299¥s a result, a non uniform grid is also required near the
wall leading to the difficulties mentioned earlier in Subsec?iéhl.1.2 In addition the role of
the wall function may be unrealistic if the flow velocity increa@élung 2002, 689)An
extra complication that exists upon simulation of free surfase i that zero normal gradient
conditions forQand should be applied at the free surfgcim and Liu 1998) Assignment of

this condition on the moving free surface boundary is not a trivial task.

2.4 Modern Discretization Methods

A common feature between COBRAS, VOFbreaind CADMASSURF is using
relatively old low order methods to discretize the convection terms. On the other hand upon
using modern methods important advantages can be exploited. These advantages ae related

the two difficulties mentioned ig.1

2.4.1 Role of modern methods in viscous flow

As already mentioned in subsecti®r3.1.1.2high order methods are more efficient than
low order methods. The reason is that they can provide better solutions using relatively coarse
grids. An example for these methods is the third order at=@IP methodYoon and Yabe
(1999)illustrated that upon using this method accurate results can be obtained using relatively
coarse grids.

Another important advantage of modern discretization methods is their ability of

modeling some types of turbulent flows without using an explicit turbulence model.

11



Ekaterinaris (2005) reported that the inherent dissipation of nonlinear high resoluti@mdsneth
can be exploited to successfully compute certain types of turbulent flows without need to an
explicit turbulence model. As a result all the complications already mentioned related to
"Q 7 modelscan be avoided. Such technique was termed recentlyE8 $tanding for
Implicit Large Eddy SimulatioiThornber, Mosedale and Drikakis 200The main argument
behind such technique mentioned Dyikakis (2003)is that the flux limiters found in many
recent high order methodsan act like a self-adjusting modelthat modify the numerical
viscosity to produce a nonlinear eddy viscasiysimilar principal was adopted in the work
of Kawamura, Takami and Kuwahai#86)which may be a pioneer study in this field.

One of the relativelymodern high order methods is theeighted essentially nen
oscillatory WENO) fifth order space accurate meth@kang and Shu 1996According to the
review made by Ekaterinaris (2005) this is one of the methods that can be used to model

turbulent flow without an explicit model.

2.4.2 Role of modern methods in capturing free surface

A common feature amongOBRAS, VOFbreak and CADMASSURF b that the wave
free surface is tracked using V@fethod Another widespread method for capturing the free
surface in multiphase flow is the Level Set metf©dher and Sethian 1988§enerally both
VOF and level set methis capture the free surface by solving the same interface equation
(Kothe, Juric, et al. 1998However unlike VOF, reconstruction is avoided in the level set
method. Instead an accurate solver like WENO should be asadvie the interface equation.

This is the reason why level set is a simple alternative compared to VOF.

Another example ofmodeling multiphase flow with reduced effort using a high order
method is the works ofoon and Yabe (1999), Yabe, Xiao abdsumi (2001) and Yabe,
Takizawa, et al. (2005). In these works the liquid and gas phases are marked by a color
function taking the discrete values of one and zero. This function is governed by the same
interface equations used in VOF and level set methbus interface function is solved using
the third order CIP method. This is another example of methods that capture the free surface

in a simplified manner.
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2.5 Conclusions

From the literature review presented the following conclusions can be drawn
1. Among varous NWTs the studies adopting viscous multiphase flow models are
the most effective.
2. Two apparent difficulties that appear upon selecting this choice is the big effort
needed to develop the free surface capturing algorithm and the turbulence model.
3. Thesedifficulties can be effectively reduced upon selecting a suitable scheme for
discretizing the convection terms.
Consequently the main aim of this thesis is to find the most efficient combination among
various discretization schemes. Adopting tombination a reliable NWT can be developed

with rather reduced effort.
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3 NUMERICAL MODEL

The main feature of the current numerical model is modeling multiphase flow adopting a
regular cartesian grid. Even with such simple option special care should beegading the
governing equations, variables definitions, numerical grid and the boundary conditions. The
aim of this chapter is to explain these aspects in detail. In addition the main steps and logic of

the model is explained.

3.1 Governing Equations

Negleding surface tension, for a twghase ga$iquid flow the incompressible Navier
Stokes equations can be written in dimensionless forrfSassman, Smereka and Osher
1994)

10 3.1
o T (3.1a)
¥ 16 10 Ul -
e L2l e 1919 W R0 2 g (31b)
o] Tw "Y1 Tw n "Tw 7Y
u ¥

Egs. (3.1a) and 8.1b) are the continuity and momentum equations, respectively, \where
is the dimensionless velocity in tf@irection."Qis the gravity force defined using Kronecker
delta asQ o) . In Eg. B.1) the indexQ plt stands for the horizontal and verticdito
directions, respectivelypy and™%are the reference length and velocity scales, respectively;
'Y is the dimensionless Reynolds number definedYas "5 %Upj ‘ p; OF and* are the
dimensionless pressure, density and viscosity that are normalized’ usihg,” and*
respectively. Three important terms that exist in the right hand side of3Hdp) (are:

convection or momentum terms T 00 Tw , viscous terms

—1 * — — 1o ,andthe pressure gradient tepn(T §T ®).
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3.2 Numerical Algorithm

In the present work Eq.3() is solved using the framework of MA@ethod. This
efficient methodology was used in many wotkse and Mizutani 2009, Zhang and Jackson
2009, Yoon and Yabe 1999petails about MAC method are found ktetcher 1991 A
staggered grid is adopt€Eig. 3.1), where the pressure node is located at the cell ¢ceviide
horizontal and vertical velocities are located the cell vertical and horontal faces,
respectively. An important advantage for using this grid is the strong coupling between the
velocities and the pressure, avoiding convergence problems and fictitious oscillations
(Ferziger and Peric 2002, 8%
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Fig. 3.1. MAC Staggeredgrid

In MAC formulation the momentum equation is time integrated to obtain horizontal and
vertical velocitiegFletcher 1991)
O i O i . p O0r 0 ;

: OOEa ., ; OwQi, ;

(3.2a)
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Momentum terms ("O0 € éandw O € § and viscous terms @ "Qandw o Qi ate
discretized using variables at the time stegvhile the pressure is discretized using the value

at steg  p. Eq. @.2) can be rearranged as:

s 30 Up 0
0 ;5 ©OYOYy ; T 0 (3.3a)
o 30 O0p  Of
. YV _ 3.3b
The discrete righand term8O'Y 0", ; andw 'Y'QY; are defined as:
OoYOY,y 0 jp ©OOed;r OwqQi j&; 30 (34a)

The divergence free constraint (EB3jl@)) is fulfilled through the following
discretization:

if Oh g ,D" j (35)

Eqg. 3.5) canbe rearranged using E@.3) in the following form
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The pressure is computed by solving E3)6) which is a Poisson equation for pressure

(PPE).

Step 1: Evaluat®©'y "0  and
w'Y'QY; using Eq. 84)
v
Step 2: Solve Eq3(6) (PPE)for U j;
v
Step 3:evaluaté | ; anduy |
by substitution in EqQ.3.3)

v
Step 4: Update flow variables

NO

Maximum simulation
time reached?

End

Fig. 3.2. Numerical model flow chart

The main steps of the numerical model are organized in a flow ch&rg.ir8.2. The
model performance stronglyaffected by stps 1 and 2. In fact the existence of gas and liquid
phases is modeled in step 1. Alsdep 2is the primary timeconsuming step in this procedure.

For these reasons two separate subsections are devoted to explain ezsehtofdisteps.
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3.2.1 Discretization of momentum and viscous terms
Using central differencinghe viscous term of the horizontahd verticalmomentum

equation can bdiscretizedas:
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Discretization of the momentum terms is a relatively complicated task. Unlike the viscous
terms, the use of central differencing formulae to approximate the momentum terms, leads to
solutions with severe ngphysical oscillations for the case of high(Fletcher 1991, 345)
Various special discretization formulae exist to approximate the convection terms. The
discretized values for viscosity ) and density( ;) are considered to be spatially variable
to acount for the presence of gas and liquid phases with different properties. The discrete

values of and” are calculated based on the fjgsid interface tracking algorithmThe
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literature is rich with various techniques to implement this algorithnceSooth algorithms
(momentum terms discretization and interface tracking) play a crucial role in the current

model, an extended presentation of both algorithms is presented in chapter 5.

3.2.2 Solution of PPE
The Pressure poisson equation is a system of lelgabraic equationsThe number of
equations of this systemlis 0 0 , wherel and0 are the number of grid cells in the

wandwdirections respectivelfq. (3.6) can be rewritten as:

-

o A (3.8)

Where ! is the coefficient matrix (sizé 0), 0is a vector (sizé) of the pressure at all
nodes and\is the right hand side vector (si#@ calculated from the right hand side of Eq.
(3.6). In Eg. (3.8) the unknown to be calculated.isFor values ofy and0 * ¢ T the
system siza) becomeg 1 p m. Storing all the elements of matrix using double
precision requires a computer memorytof 0 ¢ p ¢ Yp 1 bytes (more than 11
Gigabytes). This requirement is beyond the capabilities @fsPeven with considering the
progress in modern computef3n the other hand, it can be observed from Eq. (3.6) that each
value of0 ;; is linked to only other 4 value$ ( ;l0 D and0; ). Infact each row

of ! contains only 5 noizero elements, which are the coefficients of the 4 surrounding
pressure variables plus the diagonal value. Limiting storage taerorelements dramatically
reduces the required storage size. For instanceetiugred storage of the mentioned example

is reduced tw U Y p @ mp 1 (less than 2 Megabytespince matrix! contains

many zero el ements it (Fouseft2e00)8odviigEg.$3.8lanheSp ar s e

done usindirect or Iterative methodé~erziger and Peric 2002)
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Compute r'? = b — Az'" for some initial guess ="/

Choose 7 (for example, 7 = r'"))
for i =1.2....
pi_1 = _]',;T_rl_rz'
if p; 1 = 0 method fails
ifi=1
pli) = pli=1)

—-1)

else
.33'_—1 = I;Pi—l.r'x.ﬂi—zj{ﬂ'i_—l,r;':-’-;i—l) -
p¥ =rt"V 4+ B (pPY — w0t TY)

endif

solve Mp = p'¥
vt = Ap

a; = pi_1 /vl
s = p(i=1) _ g.q(0)

check norm of s; if small enough: set z'*) = 2"~ 4+ a;p and stop
solve Ms=s
t = As
w; =ts/tTt
't =2 L ap 4 w;s
rlt) — g — w;t
check convergence; continue if necessary
for continuation it is necessary that w; = 0
end

Fig. 3.3. Bi-CGSTAB method pseudocode

On the other hand iterative methods do not producezeom elements in a sparse system and
the flops required by them may be proportional t§ (Van-Der-Vorst 1994) Considering
CFD applications, iterative methods computasil costs are usually cheap compared to direct
methodgFerziger and Peric 2002, 9@auss elimination and LU decomposition are two well
known direct methods which can be generally applied to any linear system. Uafelyun

upon using both methods naero values are produced leading to storage space problems.
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Generally the number of required floating point operations (flops) required by direct methods

is proportional ta) (Van-Der-Vorst 194).

Various iterative methods exist. However among those various methoBs@@&STAB
method has the following advantag@&arret, et al. 1993)1) This methods applicable to
both symmetric and ariymmetric systems of equations. 2) Compared to some other iterative
methods (e.g. GMRES method) the storage requirements are relatively srBelCGBSTAB
should provide a more regular convergence pattern compa@tier iterative methods (e.g.
Conjugate Gradient method). For these rea8+GGSTAB method is dected in the current
thesis. The method pseudocode extracted Bamnetet al (1993) is shown ifrig. 3.3.

The BFCGSTAB algorithm relies on three basic operations: matdtor multiplication
(required two times), vecterector inner product (required four times) and providing a
solution for the preconditioning system 8 " (required two times)The matrix pased to
the matrix vector multiplication subroutine should consist only of thezeoa entries to save
computation storage and time. The preconditioning matrixshould fulfill two criteria. The
first criterion is that- should provide a close approximatitco! . The second criterion is
thatsolving the system- 8 " should be easier than solving 8 " . A possible choice
is to assign - to the diagonal ofl . This is the choice adopted in the current model. This is
the simplest choice and is known as tleobi preconditioner(Barret, et al. 1993)lt is

possible to use this preconditioner without using any extra storage beyond thaitself.
3.3 Boundary Conditions

3.3.1 Wall conditions

Implementation of wall boundary condition is described FEgtcher (1991) The
numerical cell boundaries should coincide at the domain boundaries. Velocity wall boundary
conditions are implemented in a natural way. For a horizontal lower Wwigl 8.4) no
penetration boundary condition is implemented gg Tt

For the horizontal velocity the condition is more complicated, sincg ; does not

reside at the horizontal boundary. For a prescribed horizontal wall horizontal vé¥ahity
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condition ond j j can be described using the fictitious horizontal velagity; ; located
outside the domain. fiYis assigned to the averagédé ; y andé | j, the following

equation is concluded:

0 i h CTY 0 i h (3.9)

The value o6 ; j used to impose velocity boundary condition is incorporated in

0Y0Y .
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Fig. 3.4. Staggered grid at a lowethorizontal boundary
Considering pressure boundary conditions Eq. (3.6) is writtefQOFq:
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3W - Rj hj hi hi
. OYOYJ-F, OYOYJ-F, ooYQiJ-Y oqujY
" 3080 3080
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For this equation two problems exist. The first is that there is no clear information about

which resides outside the domain. The second is that computM}}Y also also

needs an estimator 0 ; . Both problems can be circumnted in the following way

(Anderson, Tannehill and Pletcher 1988};. (3.3b) can be written 2 Tmas:

Ca
>5¢

‘ o e 30 0
Ui wYQY ; - 0 T (3.11)

The zero on the right hand side is obtaifreth the nepenetration condition. Eq. (3.11)

can be rewritten as:

0«
Ca

5¢
Ca

5¢

) wY QJY
" 30 h 3680

(3.12)

Both the left hand side and the right hand side of Eq. (3.12) appear in Eg. (3.10). It is

straightforward taecancel them as:

P h J h h 0 0
RN - F] ” . ” - FI ” - Fl
3w j A j j R j R
P = = R "ho
’ ” U—El— ” ” U F] ” U h (3'13)
3O o= = A fi
IolY "O“Yj F] O Y O YJ h d) !Y vq\jY ’ !: : "%‘i E
h 3680 3UB0

p h 6 B h h 'Lr) _ h 6 _
—_ ” h ” ” h ” h
3w i h i R i h i h
P TR ~
— = U Op (3.14)
3w Rj
] oY OYJ B OY"O“YJ EowY ChJY
h 3680 36RO
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An interesting result that can be observed is that the terms related to external domain

variables are simply neglected.

3.3.1.1 Wide stencilwall condition

Upon using higher methods a wider stencil is generally requi@dinstance iwill be
shown in 4.3.2that six grid points are WENO algorithmeeded taget a fifth order accurate
appoximation of the partial derivativé-or this caseo normal gradienconditionis adopted
at domain boundarig®ark, Kim and Nyata 1999) This condition is rather straightforward to
apply. In fact thevalues at théictitious nodes outside the domain assigned to the values of

the corresponding (opposite) nodes inside the domain.

3.3.2 Introduction of solid bodies

In the present work,wave propagation over arbitrarily shaped submerged bodies is
studied. Modeling such irregularly shaped boundary problems using a Cartesian uniform grid
is done wusi mdg ft HRee gii BIns @k erdeoff regicshs methdd s rabhero ¢ k e d
straightforward as described Batankar (1980)The same discretization is done for all grid
points. However, for grid points inside the solid body, the velocity is assigned to the
prescribed valuePatankar (1980Yeported that surprisingly good answer@n coften be
obtained using such a simple method.

3.3.3 Sponge layer condition

Following the methodology of Troch and DeRouk (1999) ARabsorbing b ot
conditions are implemented at the lateral boundaries. The purpose for using such conditions is
to minimize he effects of waves reflected from the domain boundaries. An absorbing function

is applied to the flow variables near the domain lateral boundariesfuiflstion is given by:

Gw  p — (3.15)
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wherew is the location of the edge of the spergyer, andb is the sponge layer width.
It is clear that the function varies gradually from p, which provides no damping at
the edge of the layer, tO @ ® 1, which provides total damping at the far edge of the

domain.In the presentvork, damping is applied to the vertical velocity.

3.4 Approximation of Velocity

It should be noted that some numerical algoritimeguire the velocity valuego be
knownat places that are different than the locations they are originally defined. For example it
will be shown in chapter 3 that the vertical veloditynay be required at the place the

horizontal velocityo is defined. In this case ; j is calculated pinterpolation as:

Ok Uf | O f Uf | (3.16)
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4 DISCRETIZATION METHODS

As already mentioned in Chapter 2, the discretization of the momentum terms and the
gasliquid interface tracking algorithrare relatively complicated topics. Consequently the
discretization method used for these tasks plays an important role in the current model. This is
the reason why different methods should be compared and tested. This chapteaised¢o
present the theoretical aspects, details and results of various methods. This step is rather
necessary to design a reliable modehong many discretizatiomethodspnly threemethods
areconsideredn this chapterwhich are CIP, CIRCSL3 andWENOS. The main reason for
this selection is that &se three methods can be used on a regular Cartesian grid.
Consequently the effort required to apply these methods is relatively small. In addition the

three methods have been applied successfuttyany applications.
4.1 CIP method

4.1.1 Theoretical background

The CIP method was applied for various applicatioriabe et al (2001) presented
various examples of these applications. They explained the strategy behind CIP in the
following points. Considering a erdimensional advection equation for any scalar quaitiity

o 1o
P e (a1)
T o0 1T w

Subject to the initial condition
Qad 06 QO (4.2)

Using characteristics it can be shown tfeaita constant value of thé, the initial profileof "Q

is translate continuously in timeKig. 4.1a). The resulting solution is:
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Q dd 0 30 Qo o300 O 0w 030 (4.3)
Although the exacsolution is rather easy serious problem occurs if Eq. (4.1) is solved
numerically. Any numerical method considers only the solution at discrete peigtg.(b).
The first order upwind scheme translates the function vatigResediscrete points. This
leads to extra diffusion near a sharp edgg.(4.1d). To fix this prollem both the function
values and derivatives are calculated numerically in CIP. The result should be a better

reproduction of the solution reserving the originally sharp gradi€ings4.1c). The function
derivatives are obtained based on the space derivative of Eq. (4.1).

o o
Discreegrid b
values
Reconstruction based Reconstruction based or
on function values an functionvalues only

spatial derivative

Diffused

Sh dient
arp gracien gradient

preserved

Fig. 4.1. The principle of CIP is based on considering both the function value arderivative to
prevent extra diffusion
Another important concept in CIP is to rely on Eq. (4.3) to update the function values.
For this reason th€IP can be sorted out as a kind of sé@mgrangian methodYabe, Xiao
and Utsumi 2001)Third order space interpolation is used to pregest. The coefficients of

the third order interpolation polynomial are evaluated based on both the \alifeend its

27



derivatives. This is dwe to decrease the interpolation stencil (grid points included in
computing®d & at each point)Yabe, Xiao and Utsumi 200epored that this schemewhich
is based on such compact stencil is able to localize dispersion errors to the regions where large

local gradients appear.

4.1.2 CIP algorithm
The method algorithm is described based on the two dimensional version of Eq. (4.1)

with a nonzero right hand sid¥abe, Ishikawa, et al. 1991)

rQ,
—._ 0

"0 Q.
T 0O W W

I | .
Ly — 44
; UT Q (44)

The space partial derivatives of Eq. (4.4) can be written as:

ra 1 10 Q¢ r Q. 170 45
T_O OT—w UT_(JO 0] T—w v T_(.L) ( . a)
ra - raQ 1 | 7T 10

The term'Qis an arbitrary function éfand its derivatives. The time integration of Eq.

(4.4)(4.5) is done based on two steps; the advection step and Haelvection step.

4.1.2.1 Advection step
In the advection step EqQ. (4.4) and Eq. (4.5) are solved based on a zero right hand side.
Using the nethod of characteristics, the values "©and the partial derivatives are

approximated as

M Om 630 030 (4.6a)
g @ Of“df” V30 (4.6b)
w
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@ 630 030
9 ! w0 (4.6¢)
T W

"Oatw is the third order interpolation function already mentioned. Eq. (4.6) is solved as:

G 06 6p3d 0i30 06 LR —

o o o o . o o o . . 4.7a
6, 6- 0, 0- "Qp, 06— 0, 0 - "Qp—+Q (4.72)
Ay 00, ¢o- O , 6 0-- "Qjf (4.7b)
Ay 0o©- ¢c0, ¢ - 06 0,, Qf (4.7¢)

The coefficient® fd I B B B andd are calculated based on the valuesf
and its partial space derivative in the suitable interpolation cell. In fact for"@atdur
numerical cell exists. The suitable cell is determined based on the sign of the velocity
component® and 0. An efficient algorithm for finding this cells provided byYabe,

Ishikawa, et al. 1991 as:

: 0R30 - L R3O (4.8a)
Vi QF QB Qi QE VHE QP Q Qi VP Q Qi Q¢ (4.8b)

~

0 Q@ Q5 Q Q g YOO Q ; Qj (4.8¢c)
5 Q 5 Qpzn QN QL Q Q i (4.8d)
3w Qi Q¢ '

0 Qi Q3w Qi Q¢

— (4.8¢e)
3w Qi Q¢

oQ f Q5 CQp 30 Qi QF
6 h (% 3d)h C h (4.8f)
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o3 YOO

5 48
O 5% o o (48)
”n, ” nQ . “Q . ’ ’?’Qr “Q‘
o o B Dn 953w WX (4.8h)
3W Qi Q¢
5 o "YO&wn Qi Qi (48)
opm Qi QF '

g " "Q CQ: 30 Qi 0 .
5y 2% 8 3 i (48j)

3w

4.1.2.2 Non Advection step
In the non advection step the effe¢ttheright hand side terms of Eq. (4.4) and Eq. (4.5)

is taken into account.

Q Q Qa 30 (4.9a)
0O ¢ O 30 O ¢ U § 30
0 : Q : Q : h : h Q : h : h
0w (3w (4.9b)
Qfr Qf Qf Qy
c3wW
0 0y 30 VIS Oy 30
0 : Q : Q : h ’h Q : h 'h
(3w (3w (4.9¢)
Q Q Q% Q
¢3W

According toYabe and Aoki (1991) he final terms at the right hand side of Eq. (4.9b)

and Eq. (4.9c) approximat@ and™Q. They pointed out that this approximation circumvents
the difficulty of obtaining the finite difference form @ and™Q when"Qincludes high order

space derivatives and ndinear terms.
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The one dimensional version of CIP was tested extensidédpe and Aoki 1991,
Takewaki, Nishiguchi and Yabe 1985lhis version suffers from two disadavantges near a
sharp gradient; diffusion to a finite thickness region, and production of spuriuos oscillations.
Yabe andAoki 1991, Takewaki, Nishiguchi and Yabe 1985 suggetsed special algotithms
overcomethis obstacle. However they did not suggest similar algorithms for the two
dimensional version, although the sapreblemexist. This may be attribted to the fact that
the two dimensional algorihm is relatively complicated compared to the one dimensional
version. It should be noted dthat the two dimensional version requires the values of the
vertical velocity to be known at the place the horizontal velocity is definetthidrcase the

interpolation formula given by Eg3.(6) is used.

4.2 CIP-CSL3 method

4.2.1 Theoretical background

The CIRCSL3 methodXiao and Yabe 20013dopts a serdagrangian concept similar
to CIP. In fact Eq. (4.6a) is used for time integration. -CBL3 can be regarded as an
enhanced version of the CIP for the following reasons:@3R3 algorithm is designed to use
the same interpolation formularféhe one dimenenal and the two dimensional versions.
This facilitates using variuos oscillationless interpolation schemes efficiently. Another
advantage of CHZSL3 is that the function partial derivatives are not included in the scheme.
Hence the datastorage requirements are reducethpared to CIP

4.2.2 CIP-CSL3 algorithm
The one dimensional solution algorithm will be presented. Next the extension to the two

dimensional problems will be explained. The algorithm aims at solving Eq. (4.10)

T (4.10)

In order to apply a sent@grangian schem&g. (4.10)is split into two parts.
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L2 6 2 (4.11a)

TT_C? g}fw - (4.11b)

Eq. @.11a) is regarded as the Lagrangian phase. As already mentiohddlj the exact
solution of this equation from method oharacteristicss: Qafd Qo 0 WD W O.
After "Qis obtained, the new solutiof2o is obtained from Eq.4(11b) by expikit finite
difference. The maintask of CIRCSL3 is to provide adequate oscillation less space
interpolation of Q& 0 WD W O.

For an equally spacedgrid extending betweemd and w with number of
subdivisions) , the following vectors are use@RQFRQ AQ , , which are the average
value at cellQthe function value at center of c&lthe derivative at center of c&land the
function value at the left node of cé&llAll vectors are th new output values. Two fictitious
cells are added to the left and right of the domain, to impose boundary conditions. So the
value of‘Qanges fronttto 0 p for ARQRQ . ForQ 4 the index varies fromm to
0 ¢. The folowing input vectors from the last steps are uskd iQ HQ HQ .
Also the following vectors are needéd ;oo ;Mo ;o ;o ;D ;D 4,
which are the velocity at theftenode of cellQthe velocity at the center of célland the last
six vectors are computational vectors needed for interpolation. The indéx ferranges
from m to O ¢ . Both 6 and @ have the same size. For
O s ;M ;0 ;R0 ;ho ,theindex ranges from 1@  +1.

It is important to note that bot and”Q can share the same vector on computation to
save memory space. Al§»andQ  share the same vectdihe method can be broken down
into four steps. These steps are shown in Pseudocode famabled.1.

‘Q is the slope of the interpolation function at ¢@Kiao and Yabg2001) reported

that this parameter provides a way to modify the interpolation function for suppressing

numericdoscillations.
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Table 4.1. One dimensional CIRCSL3 Pseudocode

Inputs Outputs Equations
'd Ao , "0 Q p&d ™ uvQ Qg
. Q Q. Q Q
Y - Y —
3w 3w
Q 1 QE 6 "—Q—‘Y A Y gy
0 0 I aQe ac c ™Y g
™ipquWQ® ; 0 T3t B
P& €I VA Q
5 %g %9
- 30 30 -
" o
g % g n O
o - 3w 3w - - 30
@ _foh A 9 0 ' o
@ AQ_ 5 R - 3® - - 30
Q v e o . g"Q 0
W w - 3w 3 - G
. o
@ 24 2 g0 Q 2q
- 3w 3w - - 30
. T T
W — Q Q —0
- 3w - - 30
, 6 30
0, O, o, 6 _ 9w
O R Q= o
W W, W, W, o0 _ m
© fo h . 30,
T Q Q —g'Q 0 O
O [ h } e . .
T ARQ 0w, 0, o,
b RO Tl aoem 1 EWM 0
L. - - C o T
"Q h h " x *
. w, 0, o,
° adah  Q
- C o T
b @ Qa6 w Qa0 W
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Consequently they dedicated a considerable effort to find a good approximation for
‘Q by testing three different methoddowever in a relatively recent woriao and
Ikebata 2003)these three methods were ignored. Instead relatively simple forwweliaes
proposeo calculateQ . In additionXiao (2004)suggetsed another simple formulhich is
selectedin the current work(second step inTable 4.1). Xiao (2004) noted that the
determination of is somewhat arbitrary and might be problem dependent. He specified a
value determined from numerical experiments in his study.

It should be noted thatherewas an error in the sign of the second termiin ; as
written in Xiao and Yab&€2001). The correct fornwaswritten in Xiao and Ikebeté2003.
Finally thea "Q¢ & furetion is defined a@Hoffmann and Chiang 2000, 246)

ép
Owitp Qi
G0t a exfxhic Y G Qo Q¥ obtp AY  cxAY  do (4.12b)

(4.12a)

The procedure explained above which is the-dingensional version CHESL3, is

programmed in a subroutine whose outputS@RQ . Extension to twedimensions is done

by splitting the domain iandwdirections. Upon such splitting a slight difference in the
variable definitions appeadk} is the volume average evaluated over @whose volume is

3a3-w(unit thicknes assumed). Als® & is defined as the surface average evaluated at the
left vertical face of ceI'lﬁQSimilarIy"(% _is the surface average at the lower horizontal face

of cell"@(Xiao 2004) Using these variablesthe two dimensional version of GIPSL3 is
based on two successive edienensional stepéXiao, lkebata and Hasegawa 2005he two
dimensional algorithm of CHESL3 is shown in Pseudocode formTiable4.2. The second
and fourth steps dfable4.2 which are the main core of tmeulti dimensional extension rely
on the TEC formul#&Xiao, lkebata and Hasegawa 2005)
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Table 4.2. Two dimensional CIRCSL3 Pseudocode

Inputs Outputs Equations
Equate the inputs of Pseudocodd able4.1 to

"q FQ "GRG "} AQ
and the outputs ta&} RQ

h — h —

Equate the inputs of Pseudocodd able4.1 to

il Gfio "RAQ
and the outputs t&}RQ
A AT B " “ p " . . »
GREFG Q. Q. 9 c @ ¢ by by

4.3 WENO method

4.3.1 Theoretical background

In the present section WENO method (Weighted Essentially®&millatory method) is
presented. It is important to provide an appropriate discussion about the concept behind
WENO. In fact this concept is totally different than the one behind CIP. It sheuidted that
the present section is mainly based on on the material preserfsual 1p98

In WENO method a concept that it is much similar to finite difference methods is
adopted. These methods are based on interpolation of discrete data using polynomials or other
simple functions. In the approximation theory, it is well known that the widestdncil, the
higher the order of accuracy. However this argument is correct provided the function being
interpolated is smooth inside the stencil. However interpolation using second or higher order
accuracy is necessarily oscillatory near a discontintityese spurious oscillations which are
called the Gibbs phenomena, often lead to numerical instability in nonlinear problems with
discontinuities. Two common ways to solve this problem are adding an artificial viscosity or
applying a slope limiter. The t#icial viscosity is a numerical parameter that is added to the

discretized equations to stabilize the solution. This parameter should be tuned to be large
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enough near a discontinuity to reduce oscillations, and small elsewhere to maintain high order
accuacy. Since tining this parameter ia problem dependenrocess, its consideed as a
disadvantage. Upon using a slope limiter, the numerical slope is reduced or lower order
interpolation is adopted near a discontinuity.e@sadvantage of this approachthat the
accuracy degenerates to first order near smooth extrema.

Before explaining how the mentioned problems are treated in WENO method it is
necessary to explain the idea adopted in ENO (EssentiallyQgoitlatory method). In fact
ENO can be regded as an earlier version of WENO. Spurious oscillations are prevented in
ENO by performing high order approximation using the optimum stencil. This stencil should
be selected among other possible stencils. For example the first order space partiatederivat

can be approximated as:

T 6'Q 6'Qy 0Qyp
T 30

0 3 (4.13)

The termsd "Q4 and6 "Qy are defined as the right and left fluxes at &IFor a
positive value of velocity the information travel from left to right. In this ca8€Qy can
be approximated using any of the three point steriflischQ p , 'Q chiQand Q phQ

p 8n fact the three stencils are subsets form the larger stéficibiQ p that is shifted to
the left Fig. 4.2).

l'Q c"uQ
A
e 0°Qr I
® | o—A—© L
Qo Q ¢ Qp Q Qp
- \_/
Q ofiQ p Q phQ p
— _
—~—
Q ohQ p
Fig. 4.2. The three possible stencils for upwind approximation othe flux aty ¥
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Among the three stencils, the stencil providing the smoothest approximation is chosen.
This stencil is identified based on evaluating Newton differences used to approximate
polynomials. The cell yielding a smaller abdelvalue for Newton difference is selected.

The main concept behind ENO which is already mentioned briefly suffers the following
disadvantage. Each of the three stencils discussed to approxirfi@te provides a third
order approximation. Generallize three stencils are checked to find the best choice. On the
otherhandusing the wide stencilQ ofiQ p in which the three smaller stencils reside yields
a higher order approximatian 3@ . In addition, using this wide stencil simplifies the logic
of the numerical routine. Instead of using only one stencil, WENO method uses a weighted
combination of the three stencils. In this way the wide stenalxoited toyield higher
accuracy. The weights allocated to the three stencils approximations atedsébeprevent

spurious oscillations.

4.3.2 WENO algorithm
In this subsection, details of the WENO fifth order method are presented. First,
discretization in the horizontal direction is described. The simple extension of the method to

multi-dimensions will be stwn later. The convection term at grid poliis discretized as:

T6Q 6'Qy 06Qy
T W 30

0 36 (4.14)

In Eq. (4.14)0 "Q presents the numerical flux to the left of pd@ilt is clear from Eq.
(4.19 that the main goal is to calculaie€’Q, for all cells. Two possible approximations
exist for6 "Q , which are labeled "Q4; (downwind) andd "Qy (up-wind). 6 "Q4 is
obtained if the stencilQ cHQ ¢ is used, and "Q+ is obtained if the stencilQ ohQ p
is used Fig. 4.3). The choicebetweend "Q, andd "Q, depends on the value of First,

both up- and downwind equations are presented, then the criteria for each choice will be

explained.
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Fig. 4.3. Downwind and upwind stencils forthe fluxati 7

4.3.2.1 Down-wind approximation

For the dowrwind approximation, the flug "Q, is given by

(4.15)

po,. P, .
1 — 0QcoQ 0Q — 00 QT10Q 07Q
pPC T
o
i 2% e 2sea sw (4.16)
pPC T
po . n P
1 — 0Q ¢c0™Q 0Q —-0"Q T1TOoQ 00 Q
pPC T
0 ™I T T (4.17)
| —(k=0,1,2 (4.18a)
T —(k=0,1,2 (4.18b)
oo Phalsa Lo
() @ o
v
0Q Eé Q -06"Q E() Q (4.19)
o Q ¢
P, v,
0Q -00Q -01Q -071Q
¢ Q o
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Here,- in EqQ.(4.18a) is an arbitrarily small parameter to avoid division by zero.

4.3.2.2 Up-wind approximation
Similar to the dowrwind case, the uvind discretization is calculated according to:

6 Qy 1 0°Q (4.20)

wherethe terms appearing in Eq. (4.20) are calculated according using Eqg. (4.21) to Eq.
(4.23).

po,. P .
I — 0Q ¢co'QoQ —00Q T1T0Q0Q
pC oG T o
) — 0™ o Q 6 —-067Q 67Q (4.21)
pPqC T
po, . p ..
f D_COQ cOQ 0Q ?OQ T0Q 00 Q
0 ™ I ™ (4.22)
| —(k=0,1,2 (4.23a)
1 (k=012 (4.23b)
v
0Q Eé Q -6"Q Eé Q
o Q
3]
60 260 260 Pom (4.23c)
¢ ¢ o
60 Pon Xon 2B
o ()} ()}

4.3.2.3 Lax-Friedrichs splitting
The choice between upind and dowrwind is made to obtain entropy correct solutions.
This process is | abel ed ff |-Rriedricesgllxisplittingsg o . [

adopted as follows:
0 Qy 000 L1

6Qy 00Qy 00 W (4.24)
6 'Qy A1 OA
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whered "Q+ is the sum of both the downmind flux of 6 "Q| "(¥q¢ and the upwind

flux of 6 "Q| "Q¢, where| maxxds More details about this split are given by Shu
[1989].

4.3.2.4 Extension to two dimensions
For the two dimensional case, Eq. (4.14) can be rewritten as:

e ‘ : (4.25)

It is important to note that th&teps of computing theertical andthe horizontal fluxes
are totally independent. In practice, the rectangular domain can be swept horizontally where
the horizontal terth 6 "' @& is computed. This step can be followed by another vertical
sweep where the vertical tetm0 " &, is computed and added to the already calculated

terms.

4.4 Test application
The goal of this subsection is tovestigatethe performanceof the three presented
methods. To perform this goal the methods are used to solve the following caresidinal

equation:

T,
—. 0

o ; T (4.26)

0
W
Whered is a constant equal Bt Subject to the initial condition

fd T D f{ pw < (4.27)

Qai Q

It can be shown using the method of characteristics that the exact solution of this problem
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Qoo O 60 (4.28)

The initial condition which is (square wave) is translated to the right with the constant

velocity 6. An important aspect of this problem is the existence of the sharp gradient.

f - . Cipcsl3 Cip === exact === exactinitial weno5
11
u::::ﬂ
0.9 0 0
0 0 w 3
0.7 0 0 00 X
0 0
05 -461==§
0 0
0.3 ¢ 0
L
0
-0-1 T T T T T T T T T 1
0 1 2 3 4 X ° 6 7 8 9 10

Fig. 4.4. Exact initial profile and final profiles of lat <4 8 (Case A).

Since the exact solution of this problem is well known, the performance of the three
methods in the presence of sharp gradients can be easily clafifiedaumerical domain
exists betweem @ p mSimulation is done for a maximum time off. Simulations are
done using two cases. For cas® A mesh points and 1T time steps are use#or case B
o ¢ mesh points and ) Ttime steps are used. Results ¢ase A are shown iRig. 4.4. As
expected the profile is translated to a total distance eqyal to

In Fig. 4.5 the results are shown for a smaller section of the domy@n (@ «®) near
the square wave. The results for case B are closer to the exact solution than those of case A.
This is expected since a coarser grid is adofiedhe last case. For both cases, CIEL3
and WENOS results are smoettand sharpr nea the sharp edge, compared to the results of
CIP. The spurious oscillations generated by CIP are taatidedin CIP-CSL3 and WENO5

results. Also both methods Ydemprovedperformance fothefiner grid.
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Fig. 4.5. Exact profile ofI along with the numerical solutions at4 8 for cases A and B.

4.5 Discussion

After presenting the theory, algorithm and the results of CIP;G3P3 and WENOS5, a
discussion of the three methods shouldubeful The aim of this discussion is to provide
guidance about the applicability of those methods to the current model.

It canbe inferred that the main aim of the three discussed methods is providing a stable
and high order numerical solution for the convection terms. The accuracy is accomplished
using relatively high order approximation (third order for CIP and-C82.3 and fifh order
for WENOS5). Special techniques are adopted to provide stable performance and avoid

numerical problems of conventional finite difference techniques.
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The results ofection4.4 clarify that CIRCSL3 and WENO5 are more acate than CIP.

Both methods provide oscillation free solutions with a sharper gradient at the discontinuity.
Consequently from a pure mathematical view WENO5 and@3B3 are better choices.
However consideringhe choice for a practical numerical model CIP is a very competitive
method This is due to the fact that CIP was applied extensively to various fluid flow problems
including single phase, multiphase, compressible and incompressib(Habe, Takizawa,

et al. 2005, Xiao and Yabe 2001)

For CIRCSL3 the situation is different. As already explained in subsedti@rihe main
target of CIPCSL3 is solving the unsteady convection equation @&H0) with a zero right
hand side. Application of this method to a rrr0 hand side equation (like E8l1b) is
complicated. Incompressible flow simulation using {@B8L3 was done recently hxiao,

Akoh and li (2006) using special discretizatimethodcalled VSIAM3 However it should be
noted that VSIAM3 is a relatively new method and more studies are needed to assess its
efficiency.

A basic advantage of WENO5 compared to the other two methods, is that it can be
applied with relative flexibility to vadus applications. The reason for this advantage is that
unlike CIP and CIFCSL3, WENOS is applied to approximate the convection term itself
¢ o0 "Qr dregardless of the equation. This is may be the main reason why WENO was
widely applied to the variouspaplications including compressible and incompressible flow
mentioned byShu (1998) Another advantage of WENOS is that only the function values are
needed to accomplish discretization. For CIP both the function values and space derivatives
are required, ah for CIRCSL3 the function values and cell averages are required.
Consequently the computation algorithm of WENOS is less coatplli and needs less

compuer memory.
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5 MODEL OPTIMIZATION

In chapter3 the main aspects and logic of the current micaé modelwas presented.
However the two modules related to the convection of momentum terms and free surface
tracking were not presented. This chapter is dedicated to testing the performance of the
methods described in Chaptefor these two modules. To organize ideas a separate section is

allocated to study each module.

5.1 ConvectionTerms Discretization
It is already mentioned in sectigh5 that using CIFCSL3 method to approximate the
momentum terms of Navier Stokes equations has several disadvantages. This is why the

current comparison will be limited to applying CIRI&WENO methods to Eq. (3.1).

5.1.1 CCUP

The main feature of CCUP fluid solver is adopting CIP method to approximate the
momentum terms in Eq. (3.1bYoon and Yabe 1999, Kishev, Hu and Kashiwagi 2086)
already mentionedh subsectiom.1.2a special nofadvection step is needed to model the
existence of non convection terms. However this step is performed in CCUP method in a way
that is rather different than the algorithm described in subsettlod This may be attributed
to the existence of the pressure gradient terms in the rightdidmaf Eq. (3.1b). As already
illustrated in sectiorB.2 the pressure should be computed using a methodology that satisfies
Eq. (3.1a) (divergence free constitdiwhile being consistent with the discretization of Eq.
(3.1b) (momentum equation). Performing this step using CIP is not a trivial task. This is due
to the fact that the momentum terms described in se8t@fOL ¢ @ndw U € Yxare not
calculated explicitly in CIP. To overcome this obstacle the following procedure is adopted in
CCUP(Yoon and Yabe 1999, Kishev, Hu akdshiwagi 2006)

First a pure convection equation is solved, where only the advection terms are treated

using the CIP method. In other words those equations should be solved:
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The inputs of this step a@ N M M ho and0  which are the
velocities values and space partial derivatives calculated from the last step. Consequently the

output are 6 M M*h0* andb’. Output velocities from advection stage are used in the

nonradvection phase. This is done through solving the following equation:

r s Z 5
O jhm O jhR . ux = Up L j
L Ow Gl oy P - (5.2a)
30 ik 3w
0 0 0 i
L L B SN oV Rl (5.2b)
30 R 3W

It should be noted that the viscous terri@d{ ‘Gi ;& andw @ ¢ ) are calculated
based o’ hb’*. Using the same methodology described in se@iathe pressure is obtained

by solving the following poisson equation:

i h 6 5 h h 'Lr) 3 h 6 ~

3.(b ” J h h ” F] ” J ﬁ h ” J FI h

p ” Fl - ” Fl ” FI . ” h .

_’ ” U h ” ” U h ” U h (5'3)
3 T oy T

. OY0Y, p OYOY 5 oYY, oYQY,

h 3080 3080
The right handide terms are defined as:
OYOY 5 6 ;5 Owdi 30 (5.4a)
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OYEY;, U ; 0% @30 (5.4b)

An important observation on CCUP algorithm related to the calculation of the velocity
space partial derivatives o h0 andd should be pointed. A major step in the original
CIP algorithm is the non advection step presented in subsettioR.2 In this step the
velocity space partial derivatives are updated according to Eq. (4.9b) and Eqg. (4.9¢). In these
equations the velocity space variatiomd dhe noradvection (viscous) terms are incorporated.
However in CCUP algorithm only the velocity values are updated using the viscous terms. As
a result the viscous terms do not have a direct effeét in h0 andv . In other words a
discre@ncy seems to exist between the calculation method of the partial derivatives in CIP
method and the corresponding method in CCUP. This discrepancy may be a serious
disadvantage, because the space derivatives play a major role in the concept of CIP. In

addtion numerical instability may occur due to abrupt velocity changes near a fixed solid
body.

512 WENOS5

The momentum terms of Eq. (3.1b) can be discretized using WENO5 in a rather
straightforward manner. The discrete t€w € dnentioned in Eq.(3.2a), is calculated by
applying the WENO5 algorithm (subsectidn3.2 to the horizontal momentum equation.
Similarly w 0 € s calculated by @plying this algorithm to the vertical momentum equation.
The advantage of the simple application of WENOS5 compared to CIP can be easily observed
upon comparing the current methodology with CCUP.

Sussman, Smereka and Osher (1984)l Sussman, Fatemi, et.&1998) usedENO
method which is an earlier version of WENO, to model incompressible flow. However both
works adopted the projection method to eliminate the pressure terms in Eq. (3.1). Compared to
MAC methodology the projection technique was less fretipapplied by researcher€hoi,
et al. (2007)modeled incompressible using WENO method and adopting the concept of
artificial compressibility which is a tunable parameter. The present model is similar to the

independent work oZhang and Jackson (200@here a tunable parameter is not used. The
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work of and Zhang and Jackson (2009) was limited to single phase flow. The present

application of WENOS to model multiphase flow is a novelty of the current study.

5.1.3 Test application

In the present subsection theottmethodologies described in subsectibrisland5.1.2
are tested by simulating the driven lid cavity problem. This problem which is characterized by
a simple shaped domain includes various interesting phenomena. The relatively old work of
Ghia, Ghia and Shin (1982}ill serves as a good source for validatiof this problem and
was referenced recently lBruneau and Saad (2006)he problem definition is shown in
Fig. 5.1. Only the upper wall is given @nstant unit horizontal velocity to the right and the
other three walls are stationary. This motion induces a vortical motion in the square. This
vortical motion is strongly dependent o1 (Reynolds number) as will be illustrated.
Simulations are dongdopting zero initial condition on the velocity.

The main governing parameter for the driven lid cavity probleivi .idn this subsection
the results for two caseé and B with’Y p 1 randu 1t 11 mespectively are presented. The
numericalparametergor both cases are listed frable5.1. If central differencing is adopted

the maximum numerical time step(Hetcher 1991, 339)

Y 0S8 VS Y ( )

Table 5.1. Numerical parameters for cases A and B.

Case A Case B
Y pTTT UVTTT
Numerical Grid pCmpPpQTmM CIMGTIT
Maximum simulation time puTm 300
Numerical time step0 v T ccuP WENOS
P 0§ L pm @t pmn
Numerical time step upper limig Y T pT g pTt
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The upper limit oftj 'Y in Eq. (5.4)is deduced from the fact thabs s p at the
upper boundary. The time step adopted for case B is alioues bigger than this upper limit.
This is an important reason for adopting special methods like CIP and WENOS5 to

approximate the momentum terms.

— W
«— >

Fig. 5.1. driven lid cavity problem

¢© Ghiaetal WENQ= = CCUP ¢® Ghiaetal= = ccup WENO
1.00 /W—e 1.00
0.90 0.90
0.80 '6 — N 0.80
0.70 g Re=1000 070 Re=5000
0.60 / 0.60
Y 0.50 / Yy 050
0.40 0.40
0.30 / 0.30 4
0.20 - 0.20 -
0.10 0.10 ~
0.00 T ) 0.00 - T )
-0.5 0 0.5 1 -0.5 0 0.5 1
u u

Fig. 5.2. Profile of horizontal velocity ¢ at axis CD
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The velocity results of the current model using CCUP and WENOS are shdwg 512

andFig. 5.3 compared with the numerical results@hia, Ghia andhin (1982) For case B

'Y is higher than case A. Consequently for case B the boundary layer thickness is smaller and

the velocity gradient is higher near the wall. The results for CCUP and WENOS5 based model

are close to those @hia, Ghia and Shin (B2). Streamlines plots for both cases are shown

in Fig. 5.4. For case A two secondary vortices are formed at the lower left and right corners, in

addition to the primary vortex near the square center. For case B an extra vortex is created at

the upper left corner, in addition to the three vortices existing fax AasThese results are
consistent with the works @hia, Ghia and Shin (1982anhdBruneau and Saad (2006)

¢ Ghiaetal

WENQ = == CCUP <o

0.50

Ghia et al= = ccup WENO

0.40
0.20 Re=1000 0.30

. o
/ \ Re=5000
RN

0.10 [ AN 0.20
0.00 e£ 0.10
' f 0.00 & <
v -0.10 v
-0.10 X
-0.20 \ -0.20 N
-0.30 Q\ -0.30 v
-0.40 -0.40 Q
-0.50 -0.50
'060 T 1 '060 T 1
0 0.5 1 0 0.5 1
X X

Fig. 5.3. Profile of vertical velocity o at axis AB

In Table 5.2 the values of the stream function evaluated at the center of the primary

vortex is shown. The results Bfuneau and Saad (2006) are shown for comparison.

Table 5.2. Minimum value of stream function at the primary vortex

Y PTTT UTITT T
Bruneau and Saad (2006) TP P YW T ¢ p WX

CCUP T POCULVUR T P TI T ppPpTEEIVLULP T
WENOS based solver ™ puvYodiwpT T XPX8 pT

49



Theresults of Bruneau and Saad (2006) were calculated using third order discretization
of the convection terms and fine grigs t ¢ 1p mcfar’y p mmandg Tt (g 1T Tfap
Y v 1L 1n addition, they verified their results by comparison with other variousswork
Consequently the results of Bruneau and Saad (2006) should be rather accuarte. The
difference between the results of CCUP and WENO based models and those of Bruneau and
Saad (2006) are shown in brackets. For both values dhe results of the WENOBased

model are more accurate than the results of CCUP.

Case A

CCUP WENOS based
Fig. 5.4 Stream lines for Cases A and B
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5.2 Free surface capturing algorithm

In the current work, multiphase flow is modeled using the level set method, where liquid
and gas regions are identified using the color funcidenTwo forms of%.exist in the
literature. One discontinuous for{¥%. ) is generated by assignifga valie of one and zero
in liquid and gas regions, respectively. Anotbhentinuousorm (%o ) results upon equatirfgo
to the distance from the géquid interface.Both forms are compared Fig. 5.5 where a
liquid drop surrounded by gas is illustratdeor both forms, the time variation &bis

governed by:

%
'|:|I_(‘())0 n O'"'%o n (5.5)

wherer  6h) is the fluid velocity vector.

Fig. 5.5. Representation of a liquid drop surrounded by a gas, left ithe discontinuousform and right

is the continuous distance formulation

1 1 1
” ” H 1 i 1 %O <_| " " H . : :
%O Tt ! 2.] ! ” ” H 3 : : ¢
Gas 1 | Gas | 1
Zero Level i %o TT 0.5 Level , :
1 1 . . ) 1 1
%0 l : Interfacei Liquid o T8 | Interfacei
1 region region

Fig. 5.6. Typical form of distance function(left) and the discontinuous color functionnear the gas

liquid interface.
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For an incompressible fluidhe fluid propertiesof interest are the densityand the

viscosity' . Theseproperties are calculated using Eg16):

"7 Yo P %o C Y %o P %o (5.6)

where* ,” ,* and” arethe dynamic viscosities andensities of liquid and gas

respectively.

Step B Obtain%o using algorithm
described in this section
Step b: Evaluate’ and’ using Eq. (5.6)
Step &: EvaluatéOY "0, ; and
w'Y'QY; using Eq. 8.4)

A

v
Step 2: Solve Eq3.6) (PPE)for 0 ;

!

Step 3:evaluaté ; y andvy ; by
substitution in Eq.3.3)

NO

A 4

Step 4: Update flow variables

Maximum simulation
time reached?

Yes

End

Fig. 5.7. Numerical model flow chart showing the role of interface capturing algorithm

%0 is computedrom %o  or %o using EQ.B.7).
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T Q% T

%o P QB p | (5.7a)
%0 Qai Q
T JOR ) 1
%o P ] (5.70)
™ p i QT Qai Q

Xis an arbitrarily small parameter selected as 0.05 in the present work. On the other hand

1 is calculated from Ed(8) using the grid sizep(Sussman, Smereka a@sher 1994)

% %

In Fig. 5.6 both formulationsare illustrated near the gégquid interface.The present
algorithm is incorporated in the numerical model as illustratdelgn5.7. It should be noted
that this flow chart is an extended version of the one shown in cl8&@ensidering-ig. 5.6,

Eqg. (5.6), (6.7) and 5.8) the following notes should be mentioned.

A major drawback o%o presentation is the uncontrolled thickness of theligasd
interface regiondue to the sharp transition fromto p. To obtain accurate results this
thickness should not exceed. Howeverit may be difficult toachievethis criterionin
practice dued numerical errors upon solving E®.§). On the other hand whég is used
re-initialization is required(Sussman, Fatemi and Smereka, et al. 1998, Sussman and Fatemi
1999) Reinitialization consumesgxtratime, but assures that the slop&wefis kept equal to
unity. Also careful ranitialization does not change the interface place (intersection between

%o and zero level) and ensures mass conservation.

5.2.1 Re-Initialization
The reinitialization comprisesolving Eg. 5.9), subject to the initial condition of Eg.
(5.10).
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% o R - ( %0 ——
L OE@ p 9%s — ! O % 9% (5.9)
rt ( %o Ao
~q
%o GITF  TU %o (5.10)

In Eg. (5.9) and Eq. (5.10% is the reinitialized distance functigr¥é is the result of
solving Eq. 6.5 by WENO andko is the intermediate value computed upon solving Eq.

(5.9). The functions appearing in E¢p.L0 are defined numerically gSussman, Fatemi and
Smereka, et al. 1998)

P OB o
0% P %0 T[.f), . % %o e P
- p — ~—OE+- €M 0VQI Q
C CF) q) . , (5.1])
T Q® o
Nfeo pp pTNT.. “ %o o @
- — —=Al 6= €M 0QI Q
CpP @ ®

wherecpis the grid spacing. In the present wopks taken as thé& & as-cfBw . A major
task upon solving Eq5.9) is providing a stable space discretizationdd%. S Such term can

be discretized using a first order or second order space approximakienfirst order
approximation igOsher and Fedkiw 2002, 58)

T %o I Al A@wht hi E 1% bt Q@ T (5.12)
T Qf | Al El% bt hi A @6 bt By, T '
where%o. and%o. are defined as:
o/ . o) -~ 0, -~ o/ .
% %o, %o o %o Y%op (5.13)
(047 qJ

54



Thesecondorder approximation iESussman, Fatemi and Smereka, et al. 1998)

Q- %o Yop .., %o | CUop Yo ﬁl:,]
" G2 2
. %oi C%o h %o hon O Q &
b = Co;@h — 7 ?%1 0 0i (5.14)

o2

, , . Q. Qp; QQ Qop
Qr  Qj ?ch Q ph,Q

Q;, &80 0QQ

Eq (.14 should be repeated two times fr "Q p and™Q "Q Finally the partial
derivative inwdirection is calculated from

T %o
T of
o Q MMi Q% mmoeMi Qs Qi Q%
op Q MTMTMi Q% 1O Mi Qs Qi Q% (5.19
— 2 - o VM QW T OE M VE T
I'p L e " P
o [ Q% ¢ "O% c

Partial derivative in y direction can be abtd similarly.Sussman, Fatemi and Smereka,
et al. (1998suggested using ENO%brder method to obtain substantial improveménthe
present workthe secondorder method is used aiternal nodes However at the boundary
nodeskqg. (5.12)is useddue b its relatively narrow stencil. Time integration of E§.9§ is

done on two steps. At first a second order Euler time integration is done
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% % DE &d %o 6 % DE &d %0 S h

%0 %0 (5' 16)
%0

Then the massonservation term is added

o)
"0 %o T—*T A"’O

‘O %o "Q%o

%o %o 0 "0 %o %o (5.17

The integral terms in Eq5(7) are calculated a&Sussman, Fatemi and Smereka, et al.
1998)

Q —— p @ Q (5.18

In the present work Eq5.0) is advanced for 3 steps, with t & "Qéw dao @ 1¢.

5.2.2 Test application

In this section results from applying different choices are showWreoretically six
choices are possible, because three discretization methods were presented (CIBLLIP
and WENO5) and two forms fdkoare possible %o and %. ). However only hree
combinations are presentd6h with CIP-CSL3 (CSL3SHRP),%0 with WENOS5 (WENG
DST) and finally%o with CIP-CSL3 (CSL3DST). These choices are motivated by the
following reasonsCSL3SHRP and WENGDST were applied widelyConsequently upon
comparing these two options useful conclusions leading to model enhan@merpected.
Another choice that was applied widglyoon and Yabe 1999, Zhu 2008) CIP method
combined with%e (CIP-SHRP). However CIESHRP combination suffers the following

disadvantages. It was illustratedsection4.4 that the CIP method yields relatively inaccurate
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results including spurious oscillations near a sharp discontinuity. This feature is important
since%o presentation is discontinuous at the liquid gas interface. In addition, the thickness
of the original sharp interface increases due to relatively higher diffusion. The following
procedure was adopted to improve €<9ARP resultgYoon and Yabe 1999, Yabe and Xiao
1993, Yabe, Xiao and Utsumi 2001)nstead of solving Eq. (5.5) the following variation is
adopted

S

5 nO 0O LIS (5.19)

O 0 OERHD % T (5.20
OAT©

%0 Y ® (5.21)

The motivation for adopting this transformation is that the abrupt variati#sfroin 1tto
p corresponds to a relatively gradual variation@f Consequently the artificial diffusion and
oscillations in'O are reduced upon transforming backe@Yabe and Xiao 1993However
Zhu (2006) reported that aisadvantage of this transformation is that the originally smooth
free surface may become a stepwise functibrstead he igygested adopting the following

transformation:

0 T P& %o T (5.22)

0 @
%o T® ———— (5.23)
Pg
On the other hand this transformatisress wide spread than the tangent transformation. As a
conclusion upon studying the current literature, the optimum transformation formula is not
clear.Sincemajor difficulties emerge upon adopti@P-SHRP consequently this option will

notbeconsideredn this section.
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Since the results of CIESL3 are more accurate than CIP (sectb#d), and since
adopting%o the difficulties of the sharp profile 8% are avoided, th@ew option examined
in the present study is CSII3ST. In order to maintain consistency, aftér is obtained from
the algorithm listed in subsectidn2.l, the surface average values used in-C8HL3 are
updated using TEC formuldn all cases CCUP method is used to solve the incompressible

flow equationsThe three options are tested agaihstlienchmark datiareak problem.

125|L

Fig. 5.8. Dam break problem configuration

& zexperiment ——WENGDST ¢ z experiment WENGDST
- = =CSLDST =-===-- CSLEHRP - = =CSL&HRP  ------- CSLDST
4.5 . 4.5 f
<> 4
4 o 4
3.5 35 /
3 3 /
Z/IL /
2.5 2.5 /
2 2 7l
15 OK{/ 1.5 //
1 1
0 1 UKH 2 0 1 GkE¥ 2 3

Fig. 5.9. Front Position versusdimensionlesgime, left is case land right is case 2
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In the dam break problem a column of water is initially held behind a barrier. The barrier
Is suddenly removed and the water column collapses and flows under ¢saekig. 5.8).
No slip boundary conditions are applied at left and lower boundaries. For right and upper
boundaries, extrapolation boundary conditions are applied to the velo@ikissproblem

depends on the following parameté¥s Y 0Ff ,° B " J” , where,

and” are the water gas viscosity and density gtrespectively The characteristic

velocity 'Y is given by ¢'QU The characteristic length and time are taken) and

OF ¢"Q, respectively.

SY/L

oYL

2 X/L 4
Fig. 5.10. Free surface profile at« h 8 h8 and 8 forcase 1 using CSLSSHRP
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The problem is calculated for two cases. For both cases v @t tand” Y o
For case 1 and case'? is equated tqp p mmandp& o p T respectively. The values are
taken to be consistent withe experiment done biartin and Moyce (1952Althoughsuch
measurementare old, they are still used for validation impdern workgXiao and lkebata
2003, Marchandise and Remacle 200Bpr case 1, the adoptedidysize isp v TTp ¢ L
divisions in the horizontal and vertical directions respectivélgr case 2p ymp v Tt
divisions areused The numerical time steps agefrt 1 and¢ bt 11t reachd T8tfor

case 1 and caser2spectively.

2Y/L

SY/L

SY/L
th

°Y/L

1 2 X/L 3 4 S
Fig. 5.11 Free surface profile at« h 8 h8 and 8 forcase 1 using CSLDST

Fig. 5.9 showsthe calculationsof water front locatiorby the three combinationsalong

with measurements dflartin and Moyce(1952) For case 1, deviation between simulation
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and measurements increases with time. For caseezagreement between simulation and
measurement is better. The same observation was loyadelecy and Pletchef1997)upon
comparing the esults of their simulations with the measurementdMaftin and Moyce

(1952) The hreecombinationgyield very close resulti® terms ofthe front position

Fig. 5.12. Free surface profile at« h 8 h 8 and 8 forcase 1using WENGDST

Fig. 5.10, Fig. 5.11 andFig. 5.12 showthe free surface profile for case 1 at four instants
using the three combinatioriBhe surface profile is marked by the valu&dwef T®. The
contour plots extend froffo 31 W g0 v The surface profile resulting from CSE3

SHRP isrelativelyirregular Initially CSL3-SHRP vyields a very narrow interface thickness.
However the interface thickness increases with time irregularly. In contrast the interface
thickness for CBE3-DST and WENGDST is rather regular and constant with tiritas clear
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