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A new numerical multiphase model is presented to study wave propagation over arbi-
trary shaped submerged obstacles. The high order space accurate weighted essentially
non-oscillatory (WENO) method is adopted along with relatively coarse Cartesian uni-
form grids. Viscosity effects are included and the free surface is tracked using the level set
method. The model is validated via application to solitary and progressive wave motion
over rectangular, trapezoidal and semicircular obstacles. The complex flow field features
induced near a large sized obstacle, including separation vortices and large free surface de-
formations, are accurately reproduced. Compared to other relatively complicated models,
the present model is efficient and produces enhanced results.

Keywords: Numerical wave model; Navier Stokes; WENO; level set; submerged obstacle;
finite difference.

1. Introduction

Studying the problem of wave propagation over submerged obstacles (abbreviated

as WPSO) is important for coastal engineers [Huang and Dong, 2001; Zhuang and

Lee, 1996; Tang and Chang, 1998]. Chang et al. [2001] cited several works dealing

with WPSO and emphasized its importance in modeling submerged breakwaters. In

general, two methods exist to study WPSO; the first choice consists of laboratory

studies and field programs; and the second choice is using numerical modeling. The

latter choice is more economic in terms of the required working space and facilities,

operating costs and technical staff [Kamphuis, 2000].
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For WPSO, vortex shedding usually occurs near the obstacle [Chang et al., 2001;

Huang and Dong, 2001; Tang and Chang, 1998]. Accurate modeling of this rotational

flow field is necessary due to its impact on sediment motion near a submerged

breakwater [Zhuang and Lee, 1996; Chang et al., 2001]. Also, strong free surface

deformations may occur for relatively large sized obstacles [Cooker et al., 1990].

Consequently, a numerical model used to simulate WPSO problem should provide

accurate results for both flow vortices and highly deformed free surfaces.

Numerical models used to simulate WPSO can be classified into two types: single

phase models and multiphase models. The studies of Zhuang and Lee [1996] and

Tang and Chang [1998] belong to the former. Both studies focused on modeling of

the separated flow field behind an obstacle. However, the free surface was tracked

indirectly; using the potential flow solution [Zhuang and Lee, 1996], or adopting a

moving curvilinear grid [Tang and Chang, 1998]. Consequently, their results were

limited to obstacles of height to a depth ratio of 0.5 and relatively small free surface

deformations.

Three widely used multiphase numerical models are “COBRAS” [Lin and Liu,

1998], “VOFbreak2” [Troch and De-Rouk, 1998, 1999] and “CADMAS-SURF” [In-

terim Development Committee of a Numerical Wave Flume for Maritime Structure

Design, 2001; Isobe et al., 1999]. The free surface is tracked in these three models

using “Volume-of-Fluid” method (VOF) adopting a fixed grid. However upon using

these models to simulate WPSO, difficulties may occur.

The discretization scheme of the advection terms of Navier Stokes equations plays

a key role in modeling WPSO. In general, two classes of discretization methods ex-

ist [Ekaterinaris, 2005]: high order methods (abbreviated as HOM) and low order

methods (abbreviated as LOM). In practical codes, LOM are preferred [Ekaterinaris,

2005]. A major disadvantage of LOM is inducing excessive numerical diffusion lead-

ing to premature deformation and dissipation of flow vortices [Ekaterinaris, 2005].

As a consequence, LOM require extremely fine grids to accurately describe vortical

flow fields, leading to large computational effort. This may be circumvented by using

non-uniform grids as done in COBRAS, VOFbreak2, and CADMAS-SURF. In this

option, finer grids are located at the regions of high gradients. However other compli-

cations occur upon using a non-uniform grid: first, very small or large values for the

horizontal vertical grid division ratio lead to numerical problems [Ferziger and Peric,

2002]; second, providing a suitable non-uniform grid for modeling WPSO where vor-

tices and highly deformed free surfaces occur simultaneously may be rather difficult;

finally, more effort is needed for grid generation or transformation depending on the

obstacle shape. With an increasing concern about coastal environment and the high

value of structures, the geometries of recent coastal structures are becoming more

complex [Lee and Mizutani, 2009]. As a result, an approach that can handle arbi-

trary geometry with high efficiency while adopting the rather simple uniform grid is

extremely valuable. Coarser grids can be used with HOM. Considering second order

LOM the error is reduced by a factor of 1/4 if the grid size is doubled. While for fifth
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order HOM the reduction factor is 1/32 [Ekaterinaris, 2005]. Consequently reliable

computational results can be obtained with a uniform grid and the non-uniform grid

complications can be avoided.

Two widespread methods to capture the free surface adopting a fixed grid are

VOF [Hirt and Nichols, 1981] and Level Set method [Osher and Sethian, 1988].

Generally both VOF and level set methods capture the free surface by solving the

same interface equation [Kothe et al., 1998]. A crucial step for solving this equa-

tion in VOF is free surface “Reconstruction” [Scardovelli and Zaleski, 1999; Pilliod

and Puckett, 2004]. This step is not simple [Sethian and Smereka, 2003]. The recon-

struction scheme of the version of VOF proposed by Hirt and Nichols [1981] (used in

COBRAS, VOFbreak2, and CADMAS-SURF) may generate a large amount of arti-

ficial drops and bubbles [Scardovelli and Zaleski, 1999]. Reconstruction is avoided in

the level set method, and the interface equation is solved using an accurate solver.

This is the reason why level set is a simple alternative compared to VOF.

The weighted essentially non-oscillatory (WENO) method [Jiang and Shu, 1996]

is one of the relatively modern discretizaion methods. According to the review of

Ekaterinaris [2005], WENO belongs to HOM. WENO is an enhanced version of ENO

method, which was applied extensively to multiphase flow [Sussman et al., 1994;

Chang et al., 1996; Sussman et al., 1998]. An important advantage of WENO is its

versatility. This method was applied extensively to compressible flow [Ekaterinaris,

2005] and recently to single phase incompressible flow [Choi et al., 2007; Zhang and

Jackson, 2009].

The purpose of the present work is to develop a new multiphase model based

on WENO and level set methods and designed for simulating WPSO on a uniform

Cartesian grid. The advantages of WENO are exploited through application to the

convection terms of Navier Stokes equations. Also WENO is incorporated in the

level set algorithm to solve the hyperbolic interface equation. The model abilities of

modeling WPSO features, including separation vortices and free surface deforma-

tion, are tested through simulating three types of obstacles: rectangular, trapezoidal

and semicircular. The model efficiency is illustrated by comparing the results of ex-

isting models and experimental measurements. The model capabilities of computing

the relatively complex case of a large sized semicircular obstacle (radius to depth

ratio 0.7 and 0.8) are emphasized.

2. Numerical Formulation

2.1. Governing equations

Neglecting surface tension, for a two-phase gas-liquid flow, the incompressible Navier

Stokes equations can be written in dimensionless form as [Sussman et al., 1994]:

∂uj

∂xj
= 0 (1a)

C
oa

st
. E

ng
. J

. 2
01

0.
52

:2
35

-2
59

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
93

.2
27

.1
4.

59
 o

n 
02

/2
3/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 29, 2010 10:59 WSPC/101-CEJ S0578563410002166

238 T. H. M. A. Kasem & J. Sasaki

∂ui

∂t
= −∂(uiuj)

∂xj
+

1

ρRe


∂{µ( ∂ui

∂xj
+

∂uj

∂xi
)}

∂xj


 − 1

ρ

∂P

∂xi
− L∞

U2
∞

gi (1b)

Equations (1a) and (1b) are the continuity and momentum equations, respectively,

where ui is the dimensionless velocity in the i direction. gi is the gravity force defined

using Kronecker delta as gi = −9.8δi2. In Eq. (1) the index i = 1, 2 stands for the

horizontal and vertical x, y directions, respectively; L∞ and U∞ are the reference

length and velocity scales, respectively; Re is the dimensionless Reynolds number

defined as Re = ρ∞U∞L∞/µ∞; P , ρ and µ are the dimensionless pressure, density

and viscosity that are normalized using ρ∞U2
∞, ρ∞ and µ∞, respectively.

Choi et al. [2007] solved Eq. (1) using WENO method and adopting the con-

cept of artificial compressibility which is a tunable parameter. In the present model,

similar to the work of Zhang and Jackson [2009] this tunable parameter is not

used. In the present work, Eq. (1) is solved using a methodology that is similar to

the MAC method. A staggered grid is adopted. Viscous and convective terms on

the right-hand side of Eq. (1b) are discretized using variables at the current time

step n. The divergence free constraint [Eq. (1a)] is fulfilled, and the pressure is

computed by solving a Poisson equation for pressure (PPE). Finally, the velocity

components at step n + 1 are evaluated. For more details on the MAC method, the

reader is referred to Fletcher [1991]. The primary time-consuming step in this pro-

cedure is to solve the system of linear equations resulting from PPE. In the present

work, the Bi-CGSTAB method is used with point Jacobi preconditioning [Barrett

et al., 1993]. In the original MAC method, both viscous diffusion and convection

terms are discretized using centered second order difference formulae. For convec-

tion dominated problems, such discretization leads to severe non-physical oscillations

[Fletcher, 1991].

In the present model, unlike the original MAC method, convection terms are

discretized using WENO fifth order space accurate method. More details about the

WENO method are given in Subsec. 2.2. Multiphase flow is studied in the current

work using the level set method. Details of the level set algorithm are presented in

Subsec. 2.3.

2.2. WENO method

In this subsection, essentials of the WENO fifth order method are presented based

on the explanation provided by Shu [1998]. First, discretization in the horizontal

direction is described. The extension to multi-dimensions will be shown later. The

convection term at grid point i is discretized as:

∂(uf)

∂x

∣∣∣∣
i

=
ûf i+1/2 − ûf i−1/2

∆x
+ O(∆x5) (2)
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Here, ∆x is the horizontal grid size, f stands for any convected quantity, including

u and v in the horizontal and vertical momentum equations, respectively. In Eq. (2),

ûf i−1/2 presents the numerical flux to the left of point i. The aim of using WENO

is to capture high gradients in a stable manner while providing high resolution for

regions of smooth gradients. To accomplish this goal the value of the fluxes (ûf i−1/2)

should be calculated carefully. Two possible approximations that exist for ûf i−1/2

are; ûf
+

i−1/2 (down-wind), and ûf
−
i−1/2 (up-wind). The former is obtained using the

values at grid points i−2, i−1, i, i+1 and i+2 (i.e. stencil [i−2, i+2]), while ûf
−
i−1/2

is obtained if the stencil [i−3, i+1] is used. First, equations for both approximations

are presented, and then the criterion for the choice among them will be explained.

For the down-wind and up-wind approximations, the flux ûf i−1/2 is given by

ûf i−1/2 =

s=2∑

s=0

ω̃sufs (3)

The terms that appear in Eq. (3) are calculated using Eq. (4) to Eq. (8):

β0 =
13

12
(uifi − 2ui+1fi+1 + ui+2fi+2)

2 +
1

4
(3uifi − 4ui+1fi+1 + ui+2fi+2)

2

β1 =
13

12
(ui−1fi−1 − 2uifi + ui+1fi+1)

2 +
1

4
(ui−1fi−1 − ui+1fi+1)

2

β2 =
13

12
(ui−2fi−1 − 2ui−1fi−1 + uifi)

2 +
1

4
(ui−2fi−2 − 4ui−1fi−1 + 3uifi)

2





(4a)

β0 =
13

12
(ui−1fi−1 − 2uifi + ui+1fi+1)

2 +
1

4
(3ui−1fi−1 − 4uifi + ui+1fi+1)

2

β1 =
13

12
(ui−2fi−2 − 2ui−1fi−1 + uifi)

2 +
1

4
(ui−2fi−2 − uifi)

2

β2 =
13

12
(ui−3fi−3 − 2ui−2fi−2 + ui−1fi−1)

2

+
1

4
(ui−3fi−3 − 4ui−2fi−2 + 3ui−1fi−1)

2





(4b)

d̃0 = 0.1 , d̃1 = 0.6 , d̃2 = 0.3 (5a)

d̃0 = 0.3 , d̃1 = 0.6 , d̃2 = 0.1 (5b)

α̃k =
d̃k

(ε + βk)2
(k = 0, 1, 2) (6)

ω̃k =
α̃k∑s=2
s=0 α̃s

(k = 0, 1, 2) (7)
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uf0 =
11

6
uifi −

7

6
ui+1fi+1 +

1

3
ui+2fi+2

uf1 =
1

3
ui−1fi−1 +

5

6
uifi −

1

6
ui+1fi+1

uf2 = −1

6
ui−2fi−2 +

5

6
ui−1fi−1 +

1

3
uifi





(8a)

uf0 =
1

3
ui−1fi−1 +

5

6
uifi −

1

6
ui+1fi+1

uf1 =
1

6
ui−2fi−2 +

5

6
ui−1fi−1 +

1

3
uifi

uf2 =
1

3
ui−3fi−3 −

7

6
ui−2fi−2 +

11

6
ui−1fi−1





(8b)

Here, ε in Eq. (6) is an arbitrarily small parameter used to avoid division by zero.

The equations appended with letter a [Eqs. (4a), (5a) and (8a)] and those appended

with letter b [Eqs. (4b), (5b) and (8b)] correspond to down-wind and up-wind dis-

cretizations, respectively.

Lax-Friedrichs flux splitting is adopted to determine the choice between up-wind

and down-wind as follows:

ûf i−1/2 =





ûf
+

i−1/2 ui&ui−1 < 0

ûf
−
i−1/2 ui&ui−1 > 0

ûf
∗
i−1/2 else

(9)

where ûf
∗
i−1/2 is the sum of both the down-wind flux of (uf−αf)/2 and the up-wind

flux of (uf + αf)/2, and α = max|ui|.
For the two-dimensional case, Eq. (2) can be rewritten as:

∂(uf)

∂x

∣∣∣∣
i,j

+
∂(vf)

∂y

∣∣∣∣
i,j

∼=
ûf i+1/2,j − ûf i−1/2,j

∆x
+

v̂f i,j+1/2 − v̂f i,j−1/2

∆y
(10)

Here, ∆y is the vertical grid size. The vertical and horizontal fluxes computation

steps are totally independent. The rectangular domain can be swept horizontally

where the horizontal term ∂(uf)/∂x|i,j is computed. This step can be followed by

another vertical sweep where the vertical term ∂(vf)/∂y|i,j is computed and added

to the already calculated terms.

2.3. Level set method

In the current work, multiphase flow is modeled using the level set method, where

liquid and gas regions are identified using the color function φ. Two forms of φ exist

in the literature [Kasem and Sasaki, 2009]. One discontinuous form is generated by
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assigning φ a value of one and zero in liquid and gas regions, respectively. Another

form results upon equating φ to the distance from the gas-liquid interface. For both

forms, the time variation of φ is governed by:

∂φ

∂t
+ ∇ · (V φ) = 0 (11)

where V is the fluid velocity vector. Various methods exist to solve Eq. (11).

Kasem and Sasaki [2009] studied choices related to those two forms of φ. They

also tested two numerical solvers of Eq. (11): WENO method, and CIP-CSL3

method proposed by Xiao and Yabe [2001]. Kasem and Sasaki [2009] demonstrated

that the discontinuous form yields a broad irregular free surface interface com-

pared to the distance formulation. Their results are consistent with the review of

Kothe et al. [1998] who reported that the discontinuous form leads to unaccept-

able broadening of the interface. Kasem and Saski [2009] also emphasized the effi-

ciency of WENO compared to CIP-CSL3. As a result, they concluded that using

the distance formulation for φ and WENO method to solve Eq. (11) is the op-

timum choice among other alternatives. In the present work, this choice will be

adopted.

The shape of φ near the interface is illustrated in Fig. 1 along with the relevant

parameters. The interface thickness δ is defined as δ = (φmax − φmin)/2 = 1.5∆,

where ∆ is the numerical grid size [Sussman et al., 1994]. For an incompressible

fluid, the fluid properties of interest are the density ρ and the viscosity µ. These

properties are calculated using Eq. (12):

ρ = ρLφcomp + ρG(1 − φcomp) µ = µLφcomp + µG(1 − φcomp) (12)

where µL, ρL, µG and ρG are the dynamic viscosities and densities of liquid and gas,

respectively. φcomp is computed from φ using Eq. (13).

Interface 

region 

Liquid

Gas

2222+z
Zero Level 

{|}~ � �� � ��. � � ���
{ c ��

� � �� . � � ���

{|�� � ��

{ b ��

Fig. 1. Typical form of φ near the gas–liquid interface.
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φcomp =





0 if φ < −δ

1 if φ > δ

0.5

{
1 + sin

(
πφ

2δ

)}
else

(13)

An important step to be done after solving Eq. (11) using WENO is re-initialization

[Sussman and Fatemi, 1999; Sussman et al., 1998]. This step assures that the slope

of φ is kept equal to unity. The re-initialization algorithm is detailed in Appendix A.

2.4. Boundary conditions

Boundary conditions are classified into three categories: bottom and top boundaries,

irregular boundaries and sponge layer boundaries. At the bottom boundary, no-slip

wall boundary condition is imposed [Wang et al., 2009; Hieu and Tanimoto, 2006].

At the top boundary, no-normal gradient wall boundary condition is applied [Park

et al., 1999].

2.4.1. Irregular boundaries

In the present work, wave propagation over arbitrarily shaped submerged bodies

is studied. Modeling such irregularly shaped boundary problems using a Cartesian

uniform grid is done using the “Blocked-off Regions” method. The blocked-off re-

gions method is rather straightforward as described by Patankar [1980]. The same

discretization is done for all grid points. However, for grid points inside the sta-

tionary solid body, the velocity is assigned to zero. Patankar [1980] reported that

surprisingly good answers can often be obtained using such a simple method.

2.4.2. Sponge layer formulation

Following the methodology of Troch and De-Rouk [1999], “absorbing boundary”

conditions are implemented at the lateral boundaries. The purpose for using these

conditions is to minimize the effects of waves reflected from the domain bound-

aries. An absorbing function is applied to the flow variables near the domain lateral

boundaries. The absorbing function is given by:

a1(x) =

√
1 −

(
x − x1

xs

)2

(14)

where x1 is the location of the edge of the sponge layer, and xs is the sponge layer

width. It is clear that the function varies gradually from a1(x1) = 1, which provides

no damping at the edge of the layer, to a1(x1+xs) = 0, which provides total damping

at the far edge of the domain. In the present work, damping is applied to the vertical

velocity.
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3. Results and Discussion

3.1. Solitary wave propagation over a submerged rectangular

obstacle

In this subsection, the verification of the proposed model by simulating the propa-

gation of a solitary wave over a submerged rectangular obstacle is described. The

problem domain and setup are sketched in Fig. 2. Measurements made by Zhuang

and Lee [1996] are used to validate the current model results. In the present exam-

ple, the reference length and velocity scales are defined as L∞ = d and U∞ =
√

gd.

In Table 1, the definition of the dimensionless parameters that govern the prob-

lem, along with the values corresponding to the experiment performed by Zhuang

and Lee [1996] are shown. Zhuang and Lee [1996] provided LDV measurements of

horizontal and vertical velocity components (u and v respectively) at the two fixed

locations (pt1 and pt2) shown in Fig. 2. Sponge layers are used at the lateral bound-

aries to minimize reflection effects. The sponge layer width is set to 3d and 0.5d at

the left and right boundaries, respectively. The dimensions of the computational

domain are Xmax = 45d and Ymax = 1.6d. The number of uniform grid subdivisions

is 855×96 cells in the horizontal and vertical directions, respectively. The maximum

�

N�+

�nop � ��N+

�+
���������%+

�+
��. �������N+

���	�N+���	�N+
Pt1

Pt2

�o . �o �

origin

Wave direction

� nop
���P

N�

Fig. 2. Definition of the problem of solitary wave propagation over a rectangular obstacle.

Table 1. Problem parameter definitions and values for solitary wave propagation over a rectangular
obstacle.

Air-water Air-water Dimensionless Dimensionless
Dimensionless Reynolds density viscosity obstacle obstacle

Parameter wave height number ratio ratio width height

Definition H/d Re =

√
gd1.5ρw

µw

ρa

ρw

µa

µw

W/d L/d

Value 0.3 3.41 × 105 1.2 × 10−3 1.97 × 10−2 1.67 0.5
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simulation time is t
√

(g/d) = 27.8, with 42,000 time steps. The left face of the ob-

stacle is located at 13.33d from the origin. The solitary wave peak is initiated at

X = 8d.

Initial conditions for η (the free surface height measured from the bottom) and

fluid velocities are given by [Lee et al., 1982]:

η

d
= 1 +

H

d

(
sech

[
(
√

(3H/4d)
X

d

])2

(15a)

u√
gd

=
η

d
− 1 (15b)

v√
gd

=
y

d

(
η

d
− 1

)√
(3H/d)

(
tanh

[√
(3H/4d)

X

d

])
(15c)

Numerical results of the present model are shown in Fig. 3. Numerical results

by Chang et al. [2001] and the measurements made by Zhuang and Lee [1996] are

shown in the same figure. The numerical results of Chang et al. [2001] were obtained

using COBRAS with a non-uniform grid of minimum spacing of 0.0109d near the

obstacle. The horizontal and vertical spacing of our model is 0.053d and 0.0167d,

respectively. Compared to the finest grid adopted by Chang et al. [2001] the spacing

of our model is approximately 5 and 1.6 times larger in the horizontal and vertical

directions, respectively. Referring to Fig. 3, our results based on a relatively coarse

and simple grid, are closer to the measurements than those of COBRAS. Such

enhancement is clearly observed for the horizontal velocity results.

In Fig. 4, stream lines and the free surface location are plotted near the rectan-

gular obstacle at six instants. The prevailing feature is the separation vortex that

is located downstream from the obstacle. The vortex size increases with time, and

the vortex motion survives even after the solitary wave travels away from the obsta-

cle. These results are consistent with the experiment performed by Zhuang and Lee

[1996]. Unlike our model, Zhuang and Lee [1996] considered the viscous effects in

their numerical calculation to be present only in the wake to the right of the obstacle.

In the rest of the domain, inviscid irrotational flow is assumed, and the boundary

element method was adopted. These assumptions should result in a faster compu-

tation time. However, with this method regions where viscous effects are present

should be known in advance. The numerical model of Zhuang and Lee [1996] did

not predict the small vortex on the top left of the obstacle that is shown in Fig. 4.

The presence of this vortex was verified by Chang et al. [2001] for a similar case.

In the present method, viscous effects are included in the whole domain in a direct

and simple manner, which leads to more reliable results.

Another remarkable feature of the current work is that the velocity fields are re-

vealed for both the air layer (gas phase) and the water layer (liquid phase). It should

be noted that verification of the air flow results is a challenging task. Unfortunately
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Fig. 3. Horizontal and vertical velocity versus time at points 1 and 2: u1 and v1 are the horizon-
tal and vertical velocity components at point 1, while u2 and v2 are the velocity components at
point 2.

in many studies, only the results of the liquid phase were presented, either for simu-

lations [Lin and Liu, 1998; Wang et al., 2009; Troch and De-Rouk, 1998, 1999], or for

experiments [Chang et al., 2001; Zhuang and Lee, 1996]. This is expected because

the main focus of the mentioned works was to study the liquid phase.

In fact experimental results of the air velocity for the present problem (air flow

over a solitary wave) were not found in the literature. A reliable method for vali-

dating air velocities is the comparison with the analytical results of the problem of

internal solitary wave. In this problem, the motion of two horizontal layers of fluids
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(a) (b)

(c) (d) 

(e) (f) 

Fig. 4. Plot of stream lines and free surface location (thick line) near the rectangular obstacle at

four instants: (a) t
√

(g/d) = 3.24; (b) t
√

(g/d) = 3.94; (c) t
√

(g/d) = 4.63; (d) t
√

(g/d) = 6.95;

(e) t
√

(g/d) = 9.267; and (f) t
√

(g/d) = 11.58.

with two different densities is analyzed. If the two fluids are considered as water and

air, strong similarity between this problem and the current one exists [Long, 1956;

Hoyler, 1979]. Theoretically, a sharp velocity gradient exists at the interface between

the two fluids [Keulegan, 1953; Lamb, 1906]. According to the analysis of Keulegan

[1953], assuming potential flow over a constant depth, an analytical formula for the

ratio between the velocities at the interface is given by:

uw

ua
= −Ha

Hw

[
1 −

(
1 − ρa

ρw

)
1

1 + Ha/Hw

]
(16)

where the subscripts w and a stand for water and air regions, respectively, Hw and

Ha are the thickness of water and air layers, respectively. For the current numerical

domain (Ymax = 1.6d), the ratio between the thickness of air and water layers

is Ha/Hw = 0.6, leading to uw/ua = −0.225. On the other hand, if the vertical

domain size is increased to Ymax = 1.8d, we get Ha/Hw = 0.8 and uw/ua = −0.356.

Consequently, it is expected that a larger domain will yield lower air velocities.
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Fig. 5. Vertical profile of the horizontal velocity near the interface at wave peak at X/d = 11.5. Left
are the results for a domain size Ymax = 1.6d, right are the results for a domain size Ymax = 1.8d.

To verify the consistency of the computational results with Eq. (16), the com-

puted vertical profile of the horizontal velocity is shown in Fig. 5. The profile location

and the time are selected at X/d = 11.5 and t
√

(g/d) = 3.24, respectively. The pro-

file is plotted at a station far enough upstream from the obstacle, and at an instant

early enough before the wave crest approaches the obstacle, so that Eq. (16) will

be valid. The potential model velocity (u exact) is plotted based on Eqs. (15b) and

(16). The current numerical model results (u) are also shown. The profile is plotted

for two computational domains whose parameters are identical, except for the ver-

tical domain size. The numerical model results yield high velocity gradient near the

interface, uw/ua ≈ −0.225 for Ymax = 1.6d, and uw/ua ≈ −0.356 for Ymax = 1.8d.

The value of φcomp (phi) exhibits a rapid transition from one to zero at the interface

as expected. These features agree well with the analytical results.

3.2. Progressive periodic wave propagation over a submerged

trapezoidal obstacle

Next, our model is verified by simulating the propagation of progressive periodic

waves over a trapezoid. The problem domain and setup are sketched in Fig. 6.

Measurements made by Beji and Battjes [1994] are used for comparison.

Similar to Subsec. 3.1, the reference length and velocity scales are defined as

L∞ = d and U∞ =
√

gd. The dimensionless parameters governing the problem

are given in Table 2. In addition to the dimensionless parameters mentioned in

Subsec. 3.1, two extra parameters affect the progressive wave problem: L̄ = Lw/d,
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Fig. 6. Definition of the problem of progressive wave propagation over a trapezoidal bar.

Table 2. Parameter definitions and values for progressive wave propagation over a trapezoid.

Air-water
Dimensionless Dimensionless Dimensionless Reynolds density Air-water

Parameter wave height wave length wave period number ratio viscosity ratio

Definition H̄ = H/d L̄ = Lw/d T̄ = T
√

g/d Re =

√
gd1.5ρw

µw

ρa

ρw

µa

µw

Value 0.05 9.232 9.8995 7.888 × 105 1.2 × 10−3 1.97 × 10−2

and T̄ = T
√

(g/d), which are the dimensionless wave length and period, respectively.

Both parameters are related by the dispersion relation [Dean and Dalrymple, 1984]:

2π

T̄ 2
=

tanh(2π/L̄)

L̄
(17)

The incoming waves are generated using Stokes second order wave theory [Dean

and Dalrymple, 1984]:

η/d = 1 +
H̄

2
cos(kx̄ − σt̄) +

H̄2π

8L̄

cosh(k)

[sinh(k)]3
[2 + cosh(2k)] cos(2kx̄ − 2σt̄) (18a)

u√
gd

= π
H̄

T̄

cosh(kȳ)

sinh(k)
cos(kx̄ − σt̄) +

3

4
π2 H̄2

L̄T̄

cosh(2kȳ)

[sinh(k)]4
cos(2kx̄ − 2σt̄) (18b)
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w√
gd

= π
H̄

T̄

sinh(kȳ)

cosh(k)
sin(kx̄ − σt̄) +

3

4
π2 H̄2

L̄T̄

sinh(2kȳ)

[sinh(k)]4
sin(2kx̄ − 2σt̄) (18c)

where k = 2π/L̄ and σ = 2π/T̄ are the dimensionless wave number and frequency

respectively, x̄ = x/d and ȳ = y/d are the dimensionless coordinates measured from

the lower left corner, and t̄ = t
√

(g/d) is the dimensionless time. The domain is

divided by 884×132 cells in the horizontal and vertical directions, respectively. The

maximum dimensionless simulation time is t̄ = 136.72, with 40,000 time steps.

In Fig. 7, the current model calculated free surface temporal variation is shown

along with measurements made by Beji and Battjes [1994]. These measurements

were made at the six locations shown in Fig. 6. The computational results and

the experimental measurements match well. Shen and Chan [2008] simulated the

same problem using a vertically uniform grid (∆y = 5 × 10−3d), with non-uniform

horizontal spacing (∆xmin = 5 × 10−2d). In our model, the uniform grid size is
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Fig. 7. Free surface versus time at the six measurement stations. The present model computations
are shown as solid lines, measurements are × symbols. The results provided by Shen and Chan
[2008] are shown for station 7 only with ◦ symbols.
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a b

�c d

e f

g h

Fig. 8. Snapshots of free surface near the crest of the trapezoid at constant time interval ∆t̄ = 4.557.
A specific crest is marked with a dashed circle.

∆y = 9.85 × 10−3d and ∆x = 7.7 × 10−2d. The vertical spacing of our model is

almost double the vertical spacing used by Shen and Chan [2008].

To avoid confusion, the results provided by Shen and Chan [2008] are shown for

station 7 only. Their results using a relatively complicated numerical model (non-

uniform grid, VOF and immersed boundary method to model obstacle presence) are

almost identical to those of our simple model (uniform coarser grid, level set and

blocked-off regions method).

The wave profile near the crest of the submerged bar is shown in Fig. 8. A

single crest is marked by a circle for convenience. The wave profile steepens as it

approaches the bar. As the wave crosses the bar, the profile is further distorted, and

secondary crests appear for the initially single crested wave.

3.3. Solitary wave propagation over a semicircular obstacle

In this subsection, the present model capabilities are illustrated by simulating a

problem of practical importance, the propagation of a solitary wave over a semi-

circular obstacle. The characteristics of a semicircular obstacle are expected to be

similar to those of a semicircular breakwater.

Semicircular breakwaters have many engineering advantages [Sasajima et al.,

1994]. For instance, a zero moment is induced at the semicircle center, resulting in

enhanced stability. The characteristics of this structure subject to periodic waves

C
oa

st
. E

ng
. J

. 2
01

0.
52

:2
35

-2
59

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
93

.2
27

.1
4.

59
 o

n 
02

/2
3/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 29, 2010 10:59 WSPC/101-CEJ S0578563410002166

Multiphase Modeling of Wave Propagation Over Submerged Obstacles 251

were studied extensively by Yuan and Tao [2003]. On the other hand, recently the

study of tsunami waves has drawn the attention of researchers [Cummins et al.,

2008].

Solitary waves can be utilized to investigate the characteristics of tsunami be-

haviors because of their hydrodynamic similarities [e.g. Hsiao et al., 2008; Thao et

al., 2008]. Cooker et al. [1990] studied solitary wave propagation over semicircular

obstacles extensively. They presented both experimental measurements and calcu-

lations. However, in their calculations, inviscid irrotational flow was assumed and

viscosity related effects were neglected. They did not verify whether or not the flow

separated behind the cylinder. Moreover, they reported failure of their numerical

method when a high curvature free surface was present. An important feature of

this problem is the simultaneous existence of vortices and highly deformed free sur-

face. As already emphasized in the introduction, providing a suitable non-uniform

grid (used in COBRAS, CADMAS-SURF and VOFbreak2) for this case is relatively

difficult.

The computational domain and setup are sketched in Fig. 9. Table 3 lists the

dimensionless governing parameters. The values for density and viscosity ratios are

identical to those given in Table 1.

We adopted two test cases: CPVD3 and CPVD2 which correspond to the experi-

ments labeled “example 3” and “example 2” by Cooker et al. [1990], respectively. In

these experiments, the measured wave surface heights were provided for CPVD3 at

stations 1, 2 and 3, and for CPVD2 at stations 4, 5 and 6 (see Fig. 9). In Table 4, the

simulation parameters for each case are listed. For both cases, the following values
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Fig. 9. Definition of the problem of solitary wave propagation over a semicircular breakwater. Refer
to Table 4 for the value of Ymax.
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Table 3. Parameter definitions for solitary wave propagation over a semicircular breakwater.

Air-water Air-water Dimensionless
Dimensionless Reynolds density viscosity semicircular

Parameter wave height number ratio ratio breakwater radius

Definition H/d Re =

√
gd1.5ρw

µw

ρa

ρw

µa

µw

R/d

Table 4. Values of parameters for simulated cases.

Case CPVD3 CPVD2

H/d 0.191 0.514

R/d 0.8 0.7

Re 4.03E5 4.92E5

Ymax 1.7 1.9

tmax

√
g/d 21.908 19.093

Measurement stations 1, 2, 3 4, 5, 6

are adopted: Xmax = 40; 32,000 simulation time steps; left and right sponge layer

widths of 3d and 0.5d respectively; and finally, a grid of 880 × 96 cells in horizontal

and vertical directions respectively. Similar to Subsec. 3.1, the solitary wave peak is

initiated at X = 8d, and the initial conditions are calculated from Eq. (15).

For validation, the free surface results using the present model are shown along

with the measurements provided by Cooker et al. [1990] in Fig. 10. Good agree-

ment between the computations and the experiment is evident. A slight discrepancy

between the computations and the measurements is observed at station 1 in case

CPVD3 and at station 2 in case CPVD2. This may be attributed to experimental

errors. One source of these errors according to Cooker et al. [1990] was the horizontal

motion of the gauges when the free surface was steep.

The presence of the separation vortex is illustrated in Fig. 11. For case CPVD2

the wave height is higher than CPVD3. As expected, more pronounced deformation

of the free surface is induced for CPVD2. For CPVD3 and CPVD2, after the wave

crest passes the breakwater, the free surface in the tail of the wave steepens and

breaks backwards onto the cylinder. This phenomenon is pointed in Fig. 11 using a

dotted circle for CPVD3 at t
√

(g/d) = 14.605 and for CPVD2 at t
√

(g/d) = 14.32.

According to the experiments performed by Cooker et al. [1990], the presence of

this “backward breaking” phenomenon (termed as B-B) is expected. The model of

Cooker et al. [1990] was not able to provide numerical results beyond t
√

(g/d) ∼= 14.

This is expected due to the presence of the high curvature at B-B. According to

the literature review conducted, the B-B free surface feature was not emphasized

before using a numerical model. The flow field in the gas region is characterized by

considerably high velocities and the presence of complicated vortices. The numerical
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Fig. 10. Present model results (solid line) and measurements (×) of temporal free surface variation
at the measurement stations reported by Cooker et al. [1990]. The results for CPVD3 for stations
1, 2 and 3 are to the left. The results for CPVD2 for stations 4, 5 and 6 are to the right.

results of the relatively high air velocities are already verified in Subsec. 3.1. Also

the existence of air vortices near a highly deformed free surface is reasonable. The

numerical results of Hieu and Tanimoto [2006] predict the occurrence of air vortices

and relatively high air velocities as a wave passes a trapezoidal obstacle.

4. Conclusion and Future Work

In this paper, we have presented a new numerical multiphase model based on WENO

fifth order space accurate method and the level set free surface capturing method,

designed to simulate wave propagation over submerged obstacles. The model can

easily handle arbitrary shaped obstacles on a uniform Cartesian grid. Consequently,

the effort required to perform efficient modeling is effectively reduced. The model

was validated through extensive simulations and comparisons with experimental

measurements. Regarding accuracy the new model results outperformed those of

other models or were at least comparable. The model was used to simulate solitary

wave propagation over a rectangular obstacle. The flow velocities computed using

the new model were closer to experimental data than those of COBRAS. Simulation
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Fig. 11. Plot of stream lines and free water surface location (thick lines) during solitary wave peak

passage over the breakwater. Snapshots for CPVD3 at times t
√

(g/d) = 10.954, 12.78, 14.605,

16.43, 18.26 are to the left. Snapshots for CPVD2 at times t
√

(g/d) = 9.55, 11.14, 12.73, 14.32,
15.91 are to the right.

of periodic wave propagation over a submerged trapezoidal obstacle was done. The

new model free surface results agreed well with the experimental measurement and

were almost identical to those produced using VOF. The model ability to capture

the complicated free surface profile in the presence of a complex, vorticity-dominated

flow field near the large semicircular obstacle was also revealed.

The present study concentrated only on modeling stationary obstacles using the

blocked-off regions method. However, the straightforward concept of this method

facilitates modeling moving obstacles. Two important applications for this problem

are floating breakwaters and landslide induced waves. We are currently working on

updating our model to handle these problems.
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Appendix A. Re-Initialization

The re-initialization comprises solving Eq. (A.1), subject to the initial condition of

Eq. (A.2).

∂φr
d

∂τ
= sign(φ0

d)(1 − |∇φu
d |) −

∫
Ωij

H ′(φu
d)

∂φu
d

∂t∫
Ωij

H ′(φu
d)f(φu

d)
H ′(φu

d)|∇φu
d | (A.1)

φr
d(x, τ = 0) = φ0

d (A.2)

In Eqs. (A.1) and (A.2) φr
d is the re-initialized distance function; φ0

d is the result

of solving Eq. (11) by WENO and φu
d is the intermediate value computed upon

solving Eq. (A.1). The functions appearing in Eq. (A.2) are defined numerically as

[Sussman et al., 1998]:

H(φ) =





1 if φ > ∆

0 if φ < −∆

1

2

(
1 +

φ

∆
+

1

π
sin

(
πφ

∆

))
otherwise

(A.3)

H ′(φ) =





0 if φ > ∆

0 if φ < −∆

1

2

(
1

∆
+

1

∆
cos

(
πφ

∆

))
otherwise

where ∆ is the grid spacing. In the present work ∆ is taken as the max(∆x,∆y). A

major task upon solving Eq. (A.1) is providing a stable space discretization for |∇φu
d |.

Such term can be discretized using a first order or second order space approximation.

The first order approximation is [Osher and Fedkiw, 2002]:

(
∂φ

∂x

)2

i,j

=

{
max([max(φ−

x , 0)]2, [min(φ+
x , 0)]2) if φi,j > 0

max([min(φ−
x , 0)]2, [max(φ+

x , 0)]2) if φi,j < 0
(A.4)

where φ−
x and φ+

x are defined as:

φ−
x =

φi,j − φi−1,j

∆x
, φ+

x =
φi+1,j − φi,j

∆x
(A.5)
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The second order approximation is [Sussman et al., 1998]:

d1
x,ij =

φk+1,j − φk,j

∆x
, a =

φk−1,j − 2φk,j + φk+1,j

(∆x)2

b =
φk,j − 2φk+1,j + φk+2,j

(∆x)2
, c =

{
a if |a| ≤ |b|
b otherwise

d2
x,ij = d1

x,ij −
∆x

2
c(2(k − i) + 1) ,

d−x = d2
x,ij if k = i − 1

d+
x = d2

x,ij otherwise

(A.6)

Equation (A.6) should be repeated two times for k = i − 1 and k = i. Finally,

the partial derivative in x direction is calculated from:
(

∂φ

∂x

)

i,j

=





d+
x if (d+

x sign(φ) < 0) and (d−x sign(φ) < −d+
x sign(φ))

d+
x if (d−x sign(φ) > 0) and (d+

x sign(φ) > −d−x sign(φ))

d+
x + d−x

2
if (d−x sign(φ) < 0) and (d+

x sign(φ) > 0)

where sign(φ) = 2

(
H(φ) − 1

2

)
(A.7)

The partial derivative in y direction can be obtained similarly. Sussman et al.

[1998] suggested using ENO 2nd order method to obtain substantial improvement.

In the present work, the 2nd order method is used at internal nodes. However at

the boundary nodes, Eq. (A.4) is used due to its relatively narrow stencil. Time

integration of Eq. (A.1) is done on two steps. At first, a second order Euler time

integration is done

φ1
d = φ0

d − ∆τ sign(φ0
d)(1 − |∇φ0

d|) , φ2
d = φ1

d − ∆τ sign(φ1
d)(1 − |∇φ1

d|)

φ3
d =

φ1
d + φ2

d

2

(A.8)

Then, the mass conservation term is added

φr
d = φ3

d − ∆τ

∫
Ωij

H ′(φ0
d)

∂φr
d

∂t∫
Ωij

H ′(φ0
d)f(φ0

d)
H ′(φ0

d)|∇φ0
d| (A.9)

The integral terms in Eq. (A.9) are calculated as [Sussman et al., 1998]:

∫

Ωij

g ≈ ∆x∆y

24


16gi,j +

1∑

m,n=−1;(m,n)6=(0,0)

gi+m,+j+n


 (A.10)
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In the present work, Eq. (A.1) is advanced for 3 steps, with ∆τ = (min(∆x,

∆y))/2.
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