PHYN001 Cairo University, Faculty of Engineering Credit Hours System Fall 2016 **Unit 09 Heat Engines, Entropy** and The Second Law

Dr. Tamer Ashour Ali

Reference

Serway, Raymond A. and Jewett, John W. *Physics for scientists and engineers with modern physics*. 9th Ed.

Contents

□ Introduction

- □ Heat Engines and the Second Law of Thermodynamics
- Heat Pumps and Refrigerators
- □ <u>The Carnot Engine</u>

Contents

□ Introduction

□ Heat Engines and the Second Law of Thermodynamics

- Heat Pumps and Refrigerators
- □ The Carnot Engine

Entropy

INTRODUCTION

• First law of thermodynamics:

$$\Delta E_{int} = Q - W$$

No distinction between the two forms of energy: heat and work.

- However, thermodynamic processes proceed naturally in one direction but not the opposite
- This has to do with the directions of thermodynamic processes and is called the second law of thermodynamics.

Contents

✓ Introduction

□ Heat Engines and the Second Law of Thermodynamics

- Heat Pumps and Refrigerators
- □ The Carnot Engine

Entropy

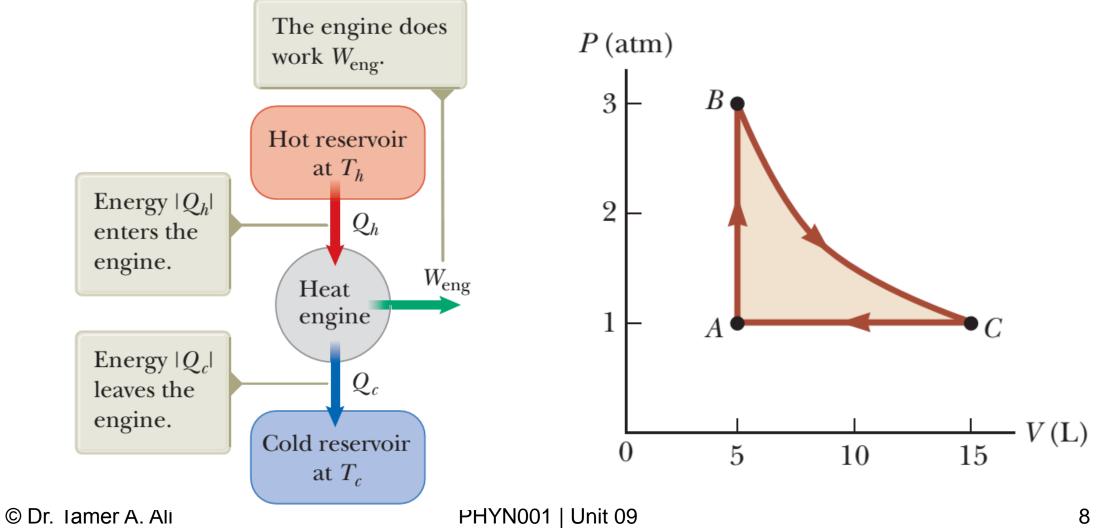
Heat engine

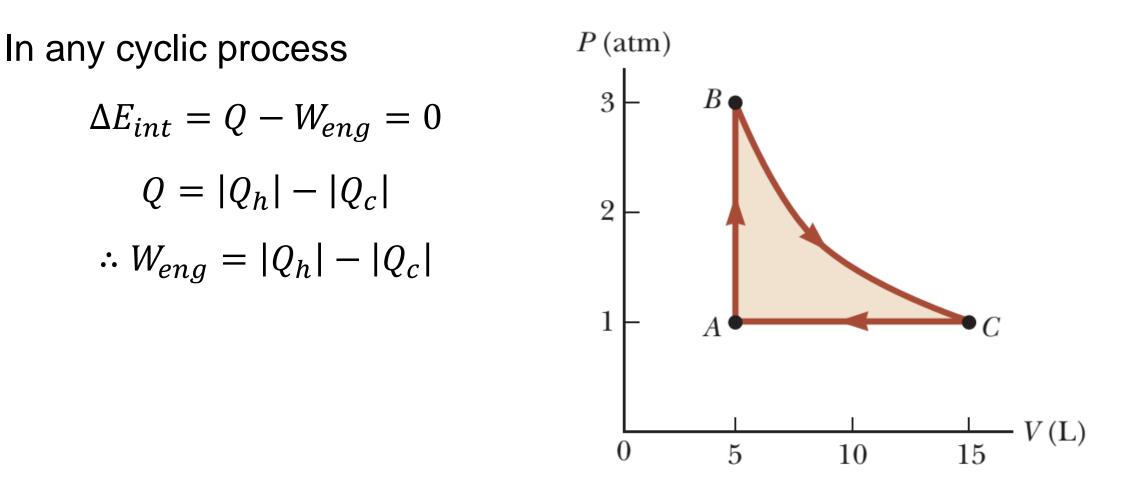
 Any device that transforms heat partly into work or mechanical energy.

- Examples:
 - A power plant produces electricity
 - The internal combustion engine in an automobile

A heat engine carries a quantity of matter (working substance) through a cyclic process during which

- 1. the working substance absorbs energy by heat from a hightemperature energy reservoir,
- 2. work is done by the engine,
- 3. energy is expelled by heat to a lower-temperature reservoir.





Thermal efficiency e of a heat engine

• The ratio of the work done by the engine in one cycle to the energy input at the higher temperature during the cycle:

$$e = \frac{W_{eng}}{|Q_h|} = \frac{|Q_h| - |Q_c|}{|Q_h|} = 1 - \frac{|Q_c|}{|Q_h|}$$

In practice, e < 100%

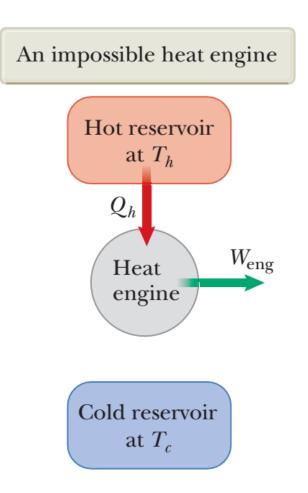
- For a good automobile engine, $e \approx 20\%$
- For a diesel engine, $e \approx 35\% 40\%$

$$e = 1 - \frac{|Q_c|}{|Q_h|}$$

e = 100% only if $|Q_c| = 0$

That is no energy is expelled to the cold reservoir and expels all of the input energy by work.

Impossible



Kelvin–Planck form of the second law of thermodynamics:

It is impossible to construct a heat engine that, operating in a cycle, produces no effect other than the input of energy by heat from a reservoir and the performance of an equal amount of work.

$$W_{eng} \neq |Q_h|$$

$$Q_c \neq 0$$

Contents

- ✓ Introduction
- ✓ Heat Engines and the Second Law of Thermodynamics
- Heat Pumps and Refrigerators
- □ The Carnot Engine

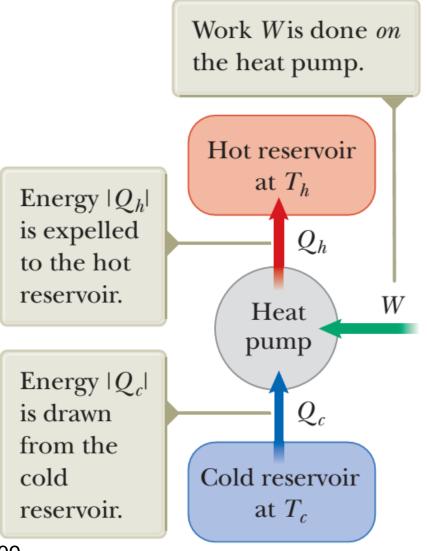
□ Entropy

HEAT PUMPS AND REFRIGERATORS

Devices that transfer energy from the cold reservoir to the hot reservoir.

- Air conditioners
- Refrigerators

Can be accomplished only if work is done on the engine.



PHYN001 | Unit 09

HEAT PUMPS AND REFRIGERATORS

Clausius form of the second law of thermodynamics:

It is impossible to construct a cyclical machine whose sole effect is to transfer energy continuously by heat from one object to another object at a higher temperature without the input of energy by work.

$$\begin{aligned} |Q_h| \neq |Q_c| \\ W_{eng} \neq 0 \end{aligned}$$

© Dr. Tamer A. Ali

HEAT PUMPS AND REFRIGERATORS

Coefficient of performance (COP)

$$COP_{heating} = \frac{|Q_h|}{W}$$
$$COP_{cooling} = \frac{|Q_c|}{W}$$

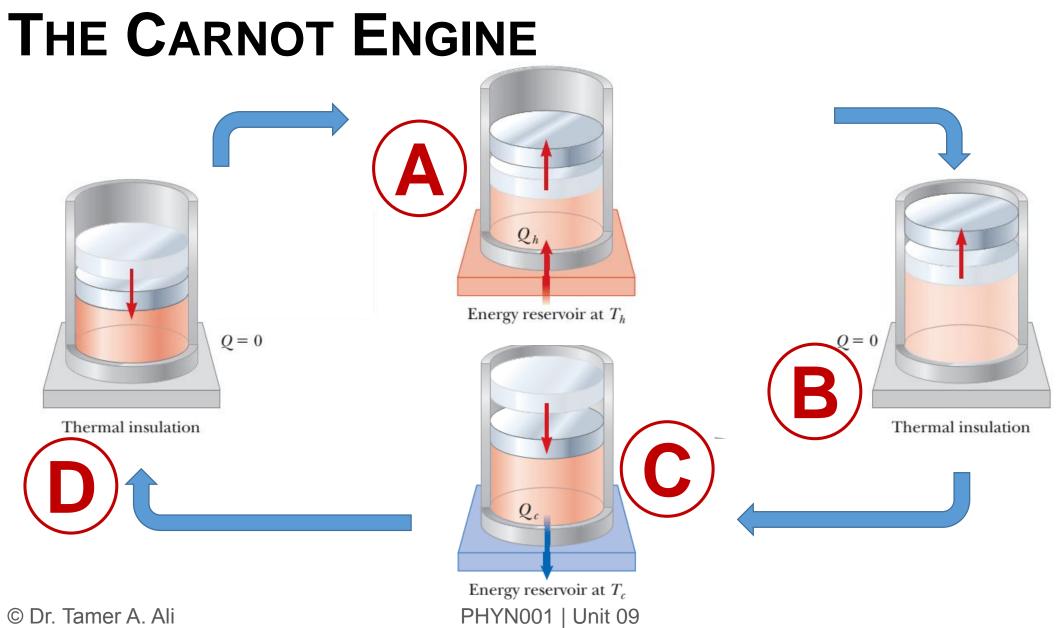
Contents

- ✓ Introduction
- ✓ Heat Engines and the Second Law of Thermodynamics
- ✓ Heat Pumps and Refrigerators
- The Carnot Engine

Entropy

A theoretical engine operating in ideal, reversible cycle between two energy reservoirs, that is the most efficient engine possible.

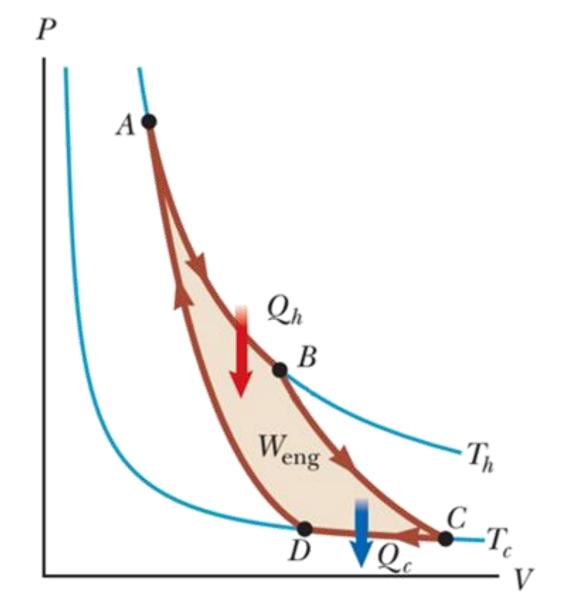
• Establishes an upper limit on efficiency for any real heat engine operating between the same two heat reservoirs.



$$e_{Carnot} = 1 - \frac{|Q_c|}{|Q_h|}$$
$$|Q_h| = nRT_h \ln(V_B/V_A)$$

$$|Q_c| = nRT_c \ln(V_C/V_D)$$

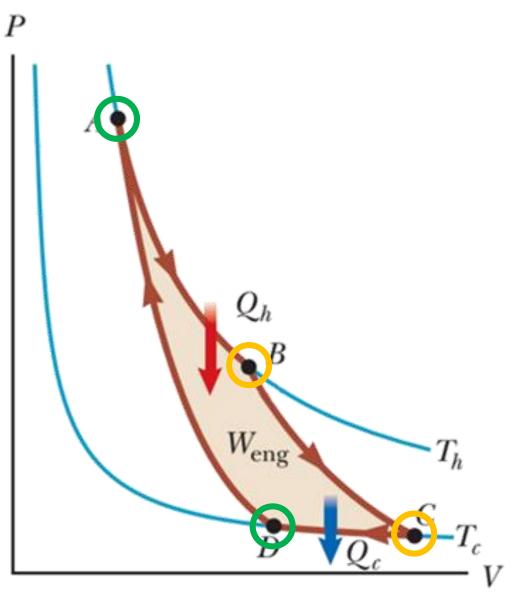
$$\therefore e_{Carnot} = 1 - \frac{T_c}{T_h} \frac{\ln(V_c/V_D)}{\ln(V_B/V_A)}$$



© Dr. Tamer A. Ali

$$e_{Carnot} = 1 - \frac{T_c}{T_h} \frac{\ln(V_C/V_D)}{\ln(V_B/V_A)}$$

Adiabatic: $TV^{\gamma-1} = \text{Const}$ $\therefore T_h V_B^{\gamma-1} = T_c V_C^{\gamma-1}$ $\& T_h V_A^{\gamma-1} = T_c V_D^{\gamma-1}$ $\therefore V_B / V_A = V_C / V_D$ $\therefore e_{carnot} = 1 - \frac{T_c}{T_h}$



© Dr. Tamer A. Ali

PHYN001 | Unit 09

If Carnot is operating in reverse order

$$COP_{heating} = \frac{T_h}{T_h - T_c}$$

$$COP_{cooling} = \frac{T_c}{T_h - T_c}$$

Contents

- ✓ Introduction
- ✓ Heat Engines and the Second Law of Thermodynamics
- ✓ Heat Pumps and Refrigerators
- ✓ The Carnot Engine

Entropy

- Entropy (S) is a state variable related to disorder in system.
 State variables: P, V, T, ΔE_{int}, S
- The entropy of an isolated system tends to increase.

You can rephrase Second Law of Thermodynamics as:

The entropy of the Universe increases in all real processes.

- The original formulation of entropy in thermodynamics involves the transfer of energy by heat during a reversible process.
- Consider any infinitesimal process in which a system changes from one equilibrium state to another with dQ_r transferred by heat to the system

$$dS = \frac{dQ_r}{T}$$

Example: A solid that has a latent heat of fusion L_f melts at a temperature T_m . Calculate the change in entropy of this substance when a mass m of the substance melts.

Solution

$$dS = \frac{dQ_r}{T} \implies \Delta S = \int \frac{dQ}{T}$$
$$T = T_m$$
$$\Delta S = \frac{1}{T_m} \int dQ = \frac{mL_f}{T_m}$$

Reversible Constant Volume Process

$$\Delta S = \int_{i}^{f} \frac{nC_{V}dT}{T} = nC_{V}\ln\frac{T_{f}}{T_{i}}$$

Reversible Constant Pressure Process

$$\Delta S = \int_{i}^{f} \frac{nC_{P}dT}{T} = nC_{P} \ln \frac{T_{f}}{T_{i}}$$

© Dr. Tamer A. Ali

PHYN001 | Unit 09

Reversible Isothermal Process

$$\Delta S = \frac{1}{T} \int_{i}^{f} dQ_{r} = nR \ln \frac{V_{f}}{V_{i}}$$

Reversible Adiabatic Process

$$\Delta S = 0$$

 ΔS of an ideal gas during any reversible process can be calculated from the equation

$$\Delta S = \int_{i}^{f} \frac{dQ_{r}}{T} = \int_{i}^{f} \frac{dE_{int} + dW}{T}$$
$$\Delta S = \int_{i}^{f} \frac{nC_{V}dT + PdV}{T}$$
$$\Delta S = \int_{i}^{f} \left\{ \frac{nC_{V}dT}{T} + \frac{nRdV}{V} \right\}$$

 ΔS of an ideal gas during any reversible process can be calculated from the equation

$$\Delta S = \int_{i}^{f} \left\{ \frac{nC_{V}dT}{T} + \frac{nRdV}{V} \right\}$$
$$\Delta S = nC_{V} \int_{i}^{f} \frac{dT}{T} + nR \int_{i}^{f} \frac{dV}{V}$$
$$\therefore \Delta S = nC_{V} \ln \frac{T_{f}}{T_{i}} + nR \ln \frac{V_{f}}{V_{i}}$$

Contents

- ✓ Introduction
- ✓ Heat Engines and the Second Law of Thermodynamics
- ✓ Heat Pumps and Refrigerators
- ✓ The Carnot Engine
- ✓ Entropy

THE KINETIC THEORY OF GASES

Process	Isobaric	Isovolumetric	Isothermal	Adiabatic
Relation	P = Const	V = Const	T = Const	Q = 0
$\frac{PV}{T} = Const$	$\frac{V}{T} = Const$	$\frac{P}{T} = Const$	PV = Const	$PV^{\gamma} = Const$ $TV^{\gamma-1} = Const$
$\Delta E_{int} = Q - W$	$nC_V\Delta T$	$nC_V\Delta T$	0	$nC_V\Delta T$
S	$nC_P \ln(T_f/T_i)$	$nC_V \ln(T_f/T_i)$	$nR\ln(V_f/V_i)$	0
W	$P(V_f - V_i)$	0	$nRT \ln \frac{V_f}{V_i}$	$-\Delta E_{int}$
Q	$nC_P\Delta T$	ΔE_{int}	W	0