## **PHYN001 Cairo University, Faculty of Engineering Credit Hours System** Fall 2016 **Unit 08 The Kinetic Theory of** Gases

**Dr. Tamer Ashour Ali** 

Reference

Serway, Raymond A. and Jewett, John W. *Physics for scientists and engineers with modern physics*. 9<sup>th</sup> Ed.

#### Contents

□ <u>Molar specific heat of an ideal gas</u>

□ Adiabatic processes for an ideal gas

□ Work Done by an Ideal Gas

#### **Contents**

#### □ Molar specific heat of an ideal gas

□ Adiabatic processes for an ideal gas

Work Done by an Ideal Gas

Due to Kinetic Theory of Gases analysis, the internal energy of an ideal gas:

$$E_{int} = Const \times T$$
$$\therefore \Delta E_{int} \propto \Delta T$$

#### Examples

- For monoatomic ideal gas:  $E_{int} = \frac{3}{2}nRT$
- For diatomic ideal gas:  $E_{int} = \frac{5}{2}nRT$

© Dr. Tamer A. Ali



Same  $\Delta E_{int} = Q - W$  for each process from  $T_i$  to  $T_f$ .

Each process has unique W

 $\therefore$  Each process has a unique Q

We need a flexible definition of specific heat:  $Q = m(c)\Delta T$ 



### Constant volume process Constant pressure process

 $Q = nC_V \Delta T \qquad \qquad Q = nC_P \Delta T$ 

 $C_V$ , Molar specific heat at const  $V = C_P$ , Molar specific heat at const P

n : number of moles

$$\Delta E_{int} = Q - W, \qquad W = 0$$
$$Q = \Delta E_{int} = nC_V \Delta T$$

n : number of moles

$$\Delta E_{int} = Q - W, \qquad W = P\Delta V$$
$$Q = nC_P\Delta T = \Delta E_{int} + P\Delta V$$
$$nC_P\Delta T = nC_V\Delta T + nR\Delta T$$
$$C_P = C_V + R$$

#### Monoatomic

Degrees of freedom f = 3

$$E_{int} = \frac{3}{2}nRT = nC_VT$$

$$C_V = \frac{3}{2}R = 12.5 \text{ J/mol} \cdot \text{K}$$

$$C_P = \frac{3}{2}R + R = \frac{5}{2}R = 20.8 \text{ J / mol} \cdot \text{K}$$

$$\gamma = C_P / C_V = 5/3 = 1.67$$

### Diatomic

Degrees of freedom 
$$f = 5$$
  

$$E_{int} = \frac{5}{2}nRT = nC_VT$$

$$C_V = \frac{5}{2}R = 20.8 \text{ J/mol} \cdot \text{K}$$

$$C_P = \frac{5}{2}R + R = \frac{7}{2}R = 29.1 \text{ J/mol} \cdot \text{K}$$

$$\gamma = C_P/C_V = 7/5 = 1.4$$

© Dr. Tamer A. Ali

| Gas              | Molar Specific Heat (J/mol · K) <sup>a</sup> |       |             |                      |
|------------------|----------------------------------------------|-------|-------------|----------------------|
|                  | $C_P$                                        | $C_V$ | $C_P - C_V$ | $\gamma = C_P / C_V$ |
| Monatomic gases  |                                              |       |             |                      |
| Не               | 20.8                                         | 12.5  | 8.33        | 1.67                 |
| Ar               | 20.8                                         | 12.5  | 8.33        | 1.67                 |
| Ne               | 20.8                                         | 12.7  | 8.12        | 1.64                 |
| Kr               | 20.8                                         | 12.3  | 8.49        | 1.69                 |
| Diatomic gases   |                                              |       |             |                      |
| H <sub>2</sub>   | 28.8                                         | 20.4  | 8.33        | 1.41                 |
| N <sub>2</sub>   | 29.1                                         | 20.8  | 8.33        | 1.40                 |
| $\overline{O_2}$ | 29.4                                         | 21.1  | 8.33        | 1.40                 |
| CO               | 29.3                                         | 21.0  | 8.33        | 1.40                 |
| $Cl_2$           | 34.7                                         | 25.7  | 8.96        | 1.35                 |
| Polyatomic gases |                                              |       |             |                      |
| $CO_2$           | 37.0                                         | 28.5  | 8.50        | 1.30                 |
| SO <sub>2</sub>  | 40.4                                         | 31.4  | 9.00        | 1.29                 |
| $H_2O$           | 35.4                                         | 27.0  | 8.37        | 1.30                 |
| $\bar{CH}_4$     | 35.5                                         | 27.1  | 8.41        | 1.31                 |
| ۹li              | PHY                                          |       |             |                      |

© Dr. Tamer A. Ali

#### **Contents**

- ✓ Molar specific heat of an ideal gas
- Adiabatic processes for an ideal gas
- □ Work Done by an Ideal Gas

## **ADIABATIC PROCESSES FOR AN IDEAL GAS**



## **ADIABATIC PROCESSES FOR AN IDEAL GAS**

$$\therefore C_V P dV + C_V V dP = -C_P P dV + C_V P dV$$
  

$$\therefore C_V V dP = -C_P P dV$$
  

$$\frac{dP}{P} = -\frac{C_P}{C_V} \frac{dV}{V} = -\gamma \frac{dV}{V}$$
  

$$\therefore \ln P = -\gamma \ln V + \text{const}$$
  

$$\therefore \ln P + \gamma \ln V = \text{const}$$
  

$$\therefore \ln P V^{\gamma} = \text{const}$$
  

$$\therefore P V^{\gamma} = \text{Const}$$



#### **Contents**

- ✓ Molar specific heat of an ideal gas
- $\checkmark$  Adiabatic processes for an ideal gas
- □ Work Done by an Ideal Gas

1. Constant *P* Process (Isobaric)

$$W = P(V_2 - V_1)$$

#### 2. Constant V Process (Isochoric)

$$W = 0$$

#### 3. Constant T process (Isothermal)

PV = nRT $W = \int_{V_i}^{V_f} PdV$  $W = \int_{V_i}^{V_f} \frac{nRT}{V} dV$ 

$$W = nRT \int_{V_i}^{V_f} \frac{dV}{V}$$

$$\therefore W = \frac{nRT}{V_i} \ln \frac{V_f}{V_i}$$

4. Adiabatic process (Q = 0)

$$P_i V_i^{\gamma} = P_f V_f^{\gamma} = Const$$

$$W = \int_{V_i}^{V_f} \mathbf{P} dV$$

$$W = Const \int_{V_i}^{V_f} V^{-\gamma} dV = Const \frac{V_f^{-\gamma+1} - V_i^{-\gamma+1}}{-\gamma+1}$$

© Dr. Tamer A. Ali

4

ш

Ľ

4. Adiabatic process (Q = 0)  $W = \frac{P_f V_f^{\gamma} V_f^{-\gamma+1} - P_i V_i^{\gamma} V_i^{-\gamma+1}}{-\gamma+1}$  $\therefore W = \frac{P_f V_f - P_i V_i}{-\gamma + 1}$  $\therefore W = nR \frac{T_f - T_i}{-\gamma + 1}$  $\therefore W = \frac{nR\Delta T}{1-\gamma}$ 

© Dr. Tamer A. Ali

ш

**M** 

PHYN001 | Unit 08

#### **Contents**

- ✓ Molar specific heat of an ideal gas
- ✓ Adiabatic processes for an ideal gas
- ✓ Work Done by an Ideal Gas

| Process                  | Isobaric              | Isovolumetric         | Isothermal             | Adiabatic                                                                      |
|--------------------------|-----------------------|-----------------------|------------------------|--------------------------------------------------------------------------------|
| Relation                 | P = Const             | V = Const             | T = Const              | Q = 0                                                                          |
| $\frac{PV}{T} = Const$   | $\frac{V}{T} = Const$ | $\frac{P}{T} = Const$ | PV = Const             | $PV^{\gamma} = Const$ $TV^{\gamma-1} = Const$ $P^{1-\gamma}T^{\gamma} = Const$ |
| $\Delta E_{int} = Q - W$ | $nC_V\Delta T$        | $nC_V\Delta T$        | $nC_V\Delta T$         | $nC_V\Delta T$                                                                 |
| W                        | $P(V_f - V_i)$        | 0                     | $nRT\lnrac{V_f}{V_i}$ | $-\Delta E_{int}$                                                              |
| Q                        | $nC_P\Delta T$        | $\Delta E_{int}$      | $\Delta E_{int} + W$   | 0                                                                              |