PHYN001

Cairo University, Faculty of Engineering Credit Hours System Fall 2016

Unit 07 Temperature, Heat, and First Law of Thermodynamics

Dr. Tamer Ashour Ali

Reference

Serway, Raymond A. and Jewett, John W. *Physics for scientists and engineers with modern physics*. 9th Ed.

TEMPERATURE, HEAT, AND FIRST LAW OF THERMODYNAMICS

Contents

□ <u>Temperature</u>

- Specific Heat and Latent Heat
- □ Work and Heat in Thermodynamic Processes

□ <u>The First Law of Thermodynamics</u>

TEMPERATURE, HEAT, AND FIRST LAW OF THERMODYNAMICS

Contents

Temperature

Specific Heat and Latent Heat

- □ Work and Heat in Thermodynamic Processes
- □ The First Law of Thermodynamics

TEMPERATURE

The Celsius and Kelvin Temperature Scales

$$T_{\rm C} = T_{\rm K} - 273.15^{\circ}$$

$$\Delta T_{\rm C} = \Delta T_{\rm K}$$

TEMPERATURE

Thermal Expansion of Solids and Liquids

If a solid object of length L_i is heated so that its temperature is raised by ΔT its length will increase by ΔL . If ΔT is not very high, change in length is given by:

 $\Delta L = \frac{\alpha}{L_i} \Delta T$

 α : Average coefficient of linear expansion

$$\therefore L_f = L_i(1 + \alpha \Delta T)$$

TEMPERATURE

Thermal Expansion of Solids and Liquids

The change in volume is given by:

 $\Delta V = \frac{\beta V_i \Delta T}{\lambda}$

 β : Average coefficient of volume expansion

 $\therefore V_f = V_i(1 + \beta \Delta T)$

For an isotropic solid: $\beta = 3\alpha$

Water has a peculiar behavior below 4°C: its volume starts to increase as the temperature decreases

TEMPERATURE, HEAT, AND FIRST LAW OF THERMODYNAMICS

Contents

✓ Temperature

Specific Heat and Latent Heat

- □ Work and Heat in Thermodynamic Processes
- □ The First Law of Thermodynamics

Heat

The transfer of energy across the boundary of a system due to a temperature difference between the system and its surroundings

1 Calorie = 4.186 Joule

"4.186" is called the mechanical equivalent of heat.

The unit of energy written on food products as Calorie with a capital "C" is actually a kilocalorie.

Thermal Equilibrium

Two objects do not exchange energy when brought into thermal contact.

Zeroth Law of Thermodynamics

If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in thermal equilibrium with each other.

Heat Capacity (C)

The amount of energy needed to raise the temperature of a particular sample of a substance by 1°C

Energy *Q* necessary to raise temperature of a sample by ΔT :

$$Q = C\Delta T$$

The unit of heat capacity is:

J/°C

Specific Heat (c)

The heat capacity per unit mass of a substance.

$$c = \frac{Q}{m\Delta T} = \frac{C}{m}$$
$$\therefore Q = mc\Delta T$$

The unit of Specific Heat is:

Heat of Transformation (Latent Heat, L)

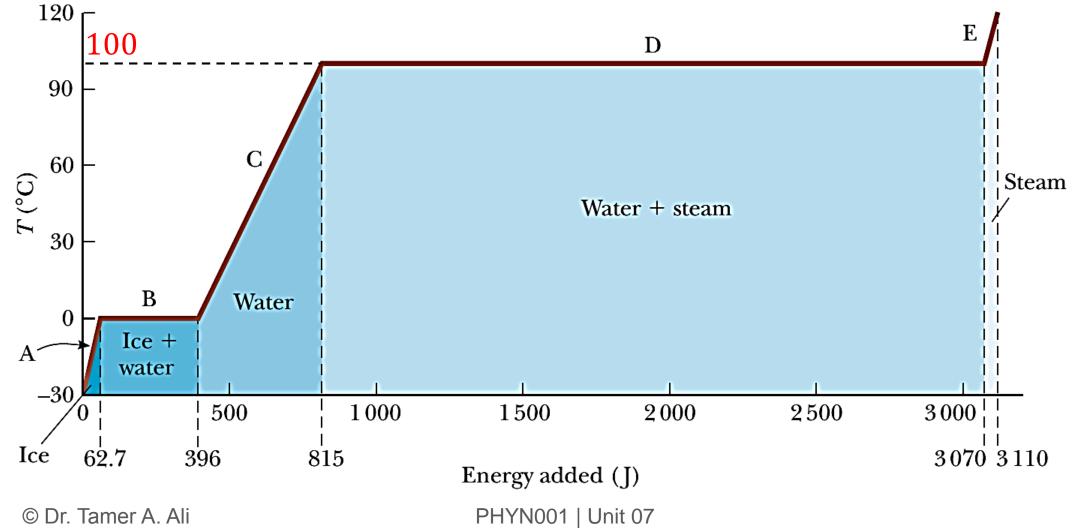
Heat of phase transform (fusion / vaporization) per unit mass

Amount of energy Q transferred to the substance to fuse/vaporize a mass m of it :

$$Q = \pm mL$$

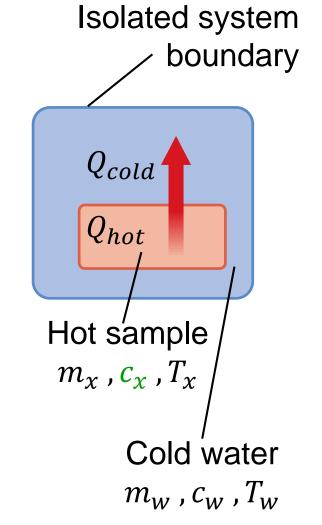
The units of *L* is:

J/kg



Calorimetry: (to measure *c*)

- Heat to known temperature T_{χ}
- Place in a vessel (calorimeter) of water of known m_w and $T_w < T_x$
- After reaching thermal equilibrium final temperature is T_f



4

R

Isolated system boundary **Calorimetry:** (to measure c) Heat Gained = Heat Lost Q_{cold} 4 $Q_{cold} = -Q_{hot}$ Q_{hot} $(m_w c_w + m_c c_c) (T_f - T_i) = -m_x c_x (T_f - T_x)$ If $c_w \gg c_c$ Hot s'ample $m_w c_w (T_f - T_i) = -m_x c_x (T_f - T_x)$ m_x , c_x , T_x $\therefore c_{\chi} = \frac{m_w c_w (T_f - T_i)}{m_{\chi} (T_{\chi} - T_f)}$ Cold water m_w , c_w , T_w

Example 1: A 0.05-kg ingot of metal is heated to 200.0°C and dropped into a beaker containing 0.4-kg of water initially at 20.0°C. If the final equilibrium temperature of the mix is 22.4°C. Find the specific heat of the metal. $c_{beaker} \ll c_w = 4186 \text{ J/kg}^{\circ}\text{C}$ Solution

Heat lost by metal = heat gained by water.

$$-m_m c_m (T_f - T_{i_m}) = m_w c_w (T_f - T_{i_w})$$
$$c_m = \frac{m_w c_w (T_f - T_{i_w})}{-m_m (T_f - T_{i_m})} = \frac{(0.4)(4186)(22.4 - 20)}{-(0.05)(22.4 - 200)} = 453 \text{ J/(kg°C)}$$

© Dr. Tamer A. Ali

Example 2: A cowboy fires a silver bullet with a speed of 200 m/s into the pine wall of a restaurant. Assume that all the internal energy generated by the impact remains with the bullet. What is the bullet temperature change? $c_{silver} = 234$ J/kg °C Solution: K.E. of the bullet is converted into internal energy

$$\therefore \frac{1}{2}mv^2 = mc_{silver}\Delta T$$
$$\therefore \Delta T = \frac{v^2}{2 c_{silver}} = \frac{200^2}{2(234)} = 85.5 \text{ °C}$$

4

ш

M

Example 3: What mass of steam initially at 130°C is needed to warm 200-g of water in a 100-g glass container from 20.0°C to 50.0°C? $c_s = 2010 \text{ J/kg}$ °C $L_{wvap} = 2.26 \times 10^6 \text{ J/kg}$ $c_w = 4186 \text{ J/kg}$ °C $c_g = 837 \text{ J/kg}$ °C **Solution**

Heat lost by steam = heat gained by water and container

$$-Q_{Hot} = Q_{Cold}$$

$$-[m_s c_s (100 - T_{i_s}) + \Delta m_s L + m_s c_w (T_f - 100)] = (m_w c_w + m_g c_g) (T_f - T_{i_w})$$

$$\Delta m_s = 0 - m_s$$

$$m_s = \frac{(m_w c_w + m_g c_g)(50 - 20)}{-[c_s (100 - 130) - L + c_w (50 - 100)]} = 0.0109 \text{ kg}$$

© Dr. Tamer A. Ali

TEMPERATURE, HEAT, AND FIRST LAW OF THERMODYNAMICS

Contents

- ✓ Temperature
- ✓ Specific Heat and Latent Heat
- □ Work and Heat in Thermodynamic Processes

□ The First Law of Thermodynamics

WORK AND HEAT IN THERMODYNAMIC PROCESSES

State Variables

 Variables that take definite values which are characteristic of the state of a system in thermal equilibrium in a certain state.
 (*T*, *P*, *V*, ...)

Transfer Variables

• Quantities that are defined only during the process in which the system goes from one state to another. (*Q*, *W*, ...)

WORK AND HEAT IN THERMODYNAMIC PROCESSES

Macroscopic Behavior of an Ideal Gas

If pressure of a gas is low enough (low density), relationship between its volume, pressure and temperature is

PV = nRT

Equation of state of an ideal gas

n = number of moles of the gas $= \frac{\text{mass of the gas}}{\text{molecular weight}}$

 $R \equiv \text{Universal gas constant} = 8.314 \text{ J/(mol. K)}$

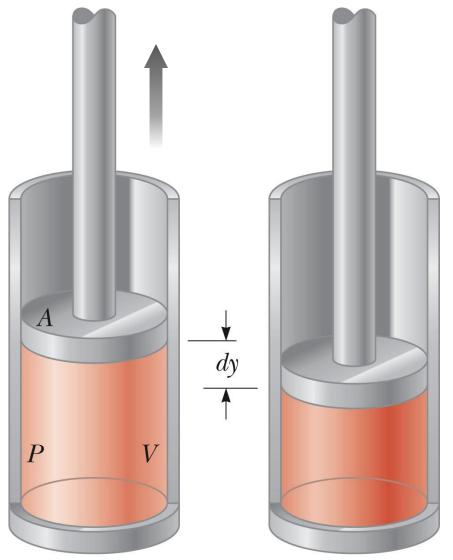
WORK AND HEAT IN THERMODYNAMIC PROCESSES

Change of V quasi-statically

• system in thermal equilibrium.

Work done by gas by \underline{F} during infinitesimal change of volume:

$$dW = \underline{F} \cdot d\underline{\ell}$$
$$dW = \left(PA_{\underline{j}}\right) \cdot \left(dy_{\underline{j}}\right)$$
$$dW = PAdy$$
$$\therefore dW = PdV$$



WORK AND HEAT IN THERMODYNAMIC PROCESSES The work done on

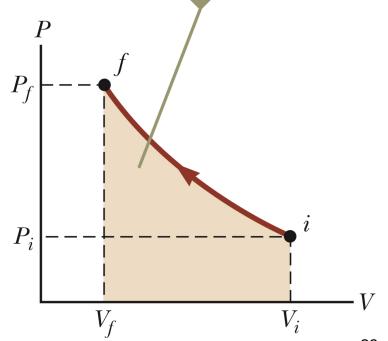
$$\therefore W = \int_{V_i}^{V_f} P dV$$

Total work done by gas:

- Equals the area under the curve.
- Depends on the path between the initial and final states.

Similarly, the heat *Q* added to a system during the change from the initial to the final state depends on the path.

The work done on a gas equals the value of the area under the *PV* curve. The area is negative here because the volume is decreasing, resulting in negative work.



TEMPERATURE, HEAT, AND FIRST LAW OF THERMODYNAMICS

Contents

- ✓ Temperature
- ✓ Specific Heat and Latent Heat
- ✓ Work and Heat in Thermodynamic Processes
- □ <u>The First Law of Thermodynamics</u>

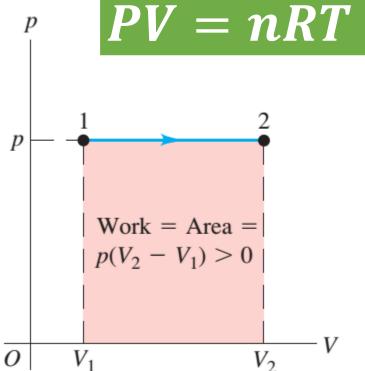
It was experimentally found that the difference between the heat added to a system and the work done by it (Q - W) during a quasi static process is a state variable: *Internal Energy*

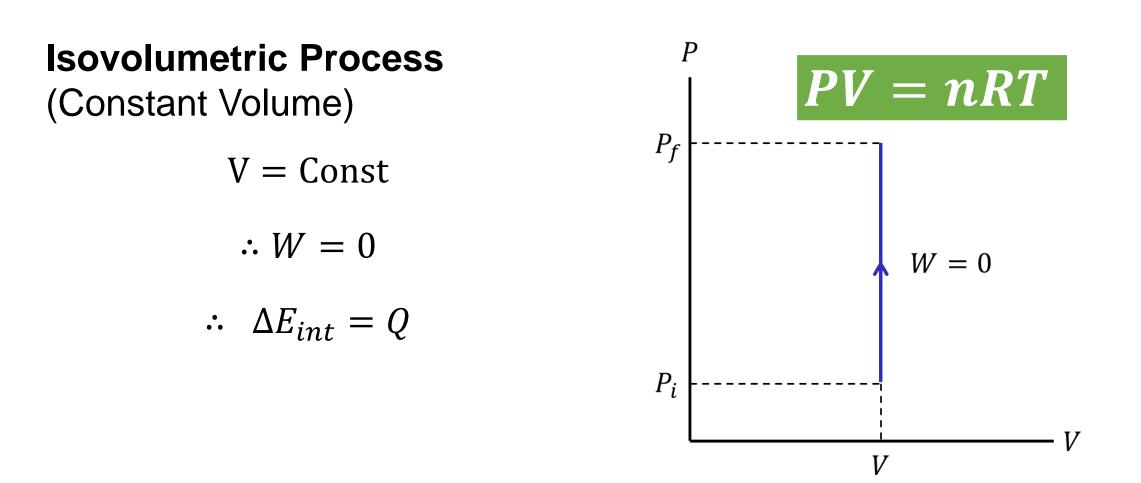
 $\Delta E_{int} = Q - W$

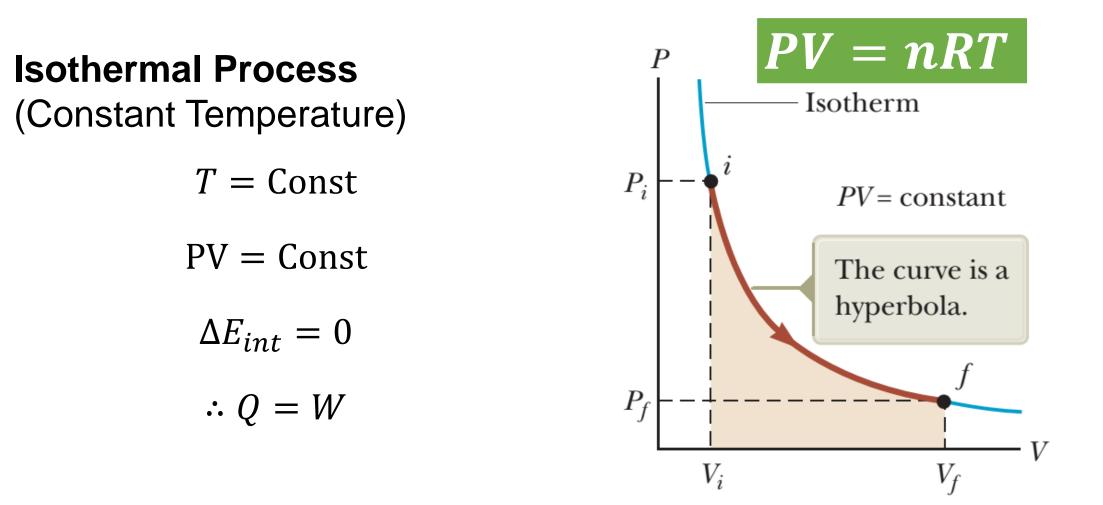
First law of Thermodynamics

$$dE_{int} = dQ - PdV$$

Isobaric Process р (Constant Pressure) P = Constр $W = P(V_f - V_i)$ $\Delta E_{int} = Q - P(V_f - V_i)$





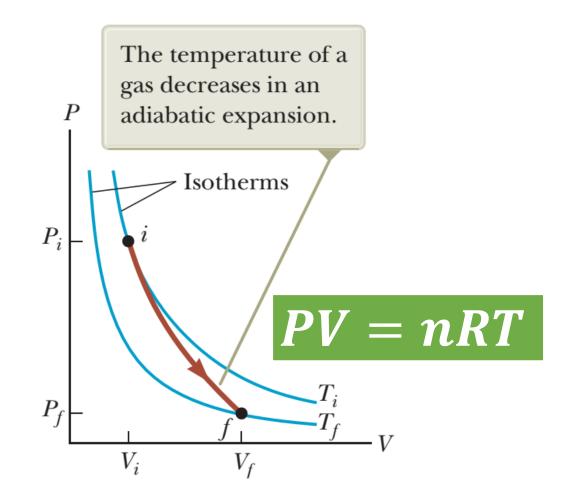


Adiabatic Process

(No heat exchange)

 $\mathbf{Q} = \mathbf{0}$

$$\Delta E_{int} = -W$$



Notes

• Isolated System: no interaction with surroundings

$$\Delta E_{int} = Q = W = 0$$

• Cyclic process: starts and ends in the same state

 $\Delta E_{int} = 0$, Q = W =Area enclosed by *PV* path

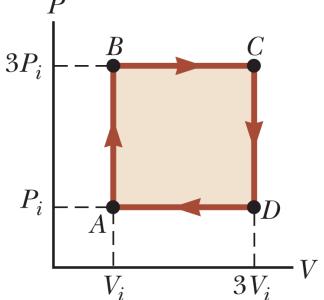
Example: An ideal gas initially at P_i , V_i , and T_i is taken through a cycle as in figure.

(a) Find the shown net work done <u>on the gas</u> per cycle for 1 mol of gas initially at 0°C.

Solution

$$W_{on} = -(W_{AB} + W_{BC} + W_{CD} + W_{DA})$$

= $0 - 3P_i(V_C - V_B) + 0 - P_i(V_A - V_D)$
= $-2P_i \times 2V_i$
= $-4P_iV_i = -4nRT_i$
= $-4 \times 1 \times 8.314 \times 273 = -9.08$ KJ

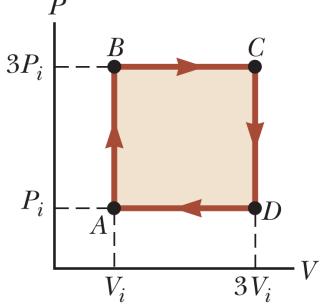


© Dr. Tamer A. Ali

Example: An ideal gas initially at P_i , V_i , and T_i is taken through a cycle as in figure.

(b) What is the net energy added by heat to the gas per cycle? Solution P

$$T_f = T_i$$
$$\Delta E_{net} = 0$$
$$\therefore Q = W = 9.08 \text{ KJ}$$



TEMPERATURE, HEAT, AND FIRST LAW OF THERMODYNAMICS

Contents

- ✓ Temperature
- ✓ Specific Heat and Latent Heat
- ✓ Work and Heat in Thermodynamic Processes
- ✓ The First Law of Thermodynamics

SUMMARY

Celsius – Kelvin conversion $T_{\rm C} = T_{\rm K} - 273.15^{\circ}$

Thermal Expansion

 $\Delta L = \alpha \; L_i \; \Delta T$, $\Delta V = \beta \; V_i \; \Delta T$

For an isotropic solid: $\beta = 3\alpha$

Heat Exchange

$$Q = m c \Delta T$$
 , $Q = \Delta m L$

Equation of state of ideal gas PV = nRT

Work done by gas $W = \int_{V_i}^{V_f} P dV$

First Law of Thermodynamics $\Delta E = \Delta Q - W$