PHYN001 Cairo University, Faculty of Engineering Credit Hours System Fall 2016 Unit 03 Universal Gravitation

Dr. Tamer Ashour Ali

Reference

Serway, Raymond A. and Jewett, John W. *Physics for scientists and engineers with modern physics*. 9th Ed.

Contents

□ Newton's Law of Universal Gravitation →

 \Box Free-Fall Acceleration and the Gravitational Force \rightarrow

 \Box Kepler's Laws and the Motion of Planets \rightarrow

- \Box The Gravitational Field \rightarrow
- \Box Gravitational Potential Energy \rightarrow
- \Box Energy Considerations in Planetary and Satellite Motion $\underline{\rightarrow}$

Contents

□ Newton's Law of Universal Gravitation

- □ Free-Fall Acceleration and the Gravitational Force
- Kepler's Laws and the Motion of Planets
- □ The Gravitational Field
- Gravitational Potential Energy
- Energy Considerations in Planetary and Satellite Motion

- Every particle $(m \neq 0)$ in the universe attracts every other particle with force of magnitude proportional
 - directly to the product of masses
 - inversely to square of distance between them

$$F_g = G \, \frac{m_1 m_2}{r_{12}^2}$$

G: the universal gravitational constant

 $G = 6.673 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ measured experimentally

• The vector nature of the force can be written as

$$\underline{F}_{12} = -G \frac{m_1 m_2}{r_{12}^2} \hat{\underline{r}}_{12}$$
$$\underline{F}_{21} = -G \frac{m_2 m_1}{r_{21}^2} \hat{\underline{r}}_{21}$$

• But $\underline{\hat{r}}_{12} = -\underline{\hat{r}}_{21}$ $\therefore \underline{F}_{12} = -\underline{F}_{21}$

 Principle of Superposition of gravitational forces

 $\underline{F}_{1} = \underline{F}_{21} + \underline{F}_{31} + \underline{F}_{41}$

 The Mutual force between a uniform sphere and a particle is given by the same equation

$$\underline{F}_{12} = -G \, \frac{m_1 m_2}{r_{12}^2} \underline{\hat{r}}_{12}$$

 r_{12} is the distance between the particle and the center of the sphere.

PHYN001 | Unit 03

• What about the magnitude of force between earth and any particle ???

$$F = G \frac{M_E m}{r^2}$$

- M_E is the mass of earth
- *r* is the distance between the particle *m* and center of earth.

PHYN001 | Unit 03

Contents

✓ Newton's Law of Universal Gravitation

□ Free-Fall Acceleration and the Gravitational Force

- □ Kepler's Laws and the Motion of Planets
- □ The Gravitational Field
- Gravitational Potential Energy
- Energy Considerations in Planetary and Satellite Motion

The weight of a particle of mass m on the surface of the earth is given by

$$F = G \frac{M_E m}{R_E^2} = mg$$
$$\therefore g = G \frac{M_E}{R_E^2}$$

Example: Using the known Earth radius and g = 9.80 m/s² at the Earth surface, find the <u>average density</u> of the Earth.

Solution:

$$g = G \frac{M_E}{R_E^2} \rightarrow \therefore M_E = \frac{gR_E^2}{G} = \rho_{Avg}V_E = \rho_{Avg}\left(\frac{4}{3}\pi R_E^3\right)$$
$$\therefore \rho_{Avg} = \frac{3gR_E^2}{4\pi GR_E^3} = \frac{3g}{4\pi GR_E}$$
$$\therefore \rho_{Avg} = \frac{3(9.8)}{4\pi (6.67 \times 10^{-11})(6.37 \times 10^6)} = 5.5 \times 10^3 \text{ kg/m}^3$$

If the particle is at a distance h above earth surface, how can you calculate g ???

$$F_g = G \frac{M_E m}{r^2} = G \frac{M_E m}{(R_E + h)^2} \qquad \text{If } h/R_E \ll 1$$

$$\therefore g = G \frac{M_E}{(R_E + h)^2} \qquad \therefore g \cong G \frac{M_E}{R_E^2} (1 - 2h/R_E)$$

$$g = G \frac{M_E}{R_E^2} (1 + h/R_E)^{-2}$$

Variation of g with altitude h

Altitude <i>h</i> (km)	$g({ m m/s^2})$
$1\ 000$	7.33
$2\ 000$	5.68
3 000	4.53
$4\ 000$	3.70
$5\ 000$	3.08
$6\ 000$	2.60
$7\ 000$	2.23
8 000	1.93
9 000	1.69
$10\ 000$	1.49
$50\ 000$	0.13
∞	0

Actual free fall acceleration near surface of earth is a little different than $g = G M_E / R_E^2$ due to three reasons:

- 1. Earth density is not uniform
- 2. Earth is not a perfect sphere
- 3. Earth is rotating

Contents

- ✓ Newton's Law of Universal Gravitation
- ✓ Free-Fall Acceleration and the Gravitational Force
- □ Kepler's Laws and the Motion of Planets
- □ The Gravitational Field
- Gravitational Potential Energy
- Energy Considerations in Planetary and Satellite Motion

- 1. All planets move in elliptical orbits with the Sun at one focus.
- **2.** The radius vector drawn from the Sun to a planet sweeps out equal areas in equal time intervals.
- **3.** The square of the orbital period of any planet is proportional to the cube of the semimajor axis of the elliptical orbit.

Watch animation on http://astro.unl.edu/naap/pos/animations/kepler.swf

- If a small object M_p is moving around a uniform sphere of $M_s \gg m_p$, the motion of the orbit is an ellipse.
- A special case of the ellipse is a circle.
- A particle moving in a circle of radius *R* with constant speed *v* will have a centripetal acceleration given by

$$a_c = v^2/R$$

$$a_{c} = \frac{v^{2}}{R}$$

$$F_{g} = F_{c}$$

$$G \frac{M_{s}m_{p}}{R^{2}} = \frac{m_{p}v^{2}}{R}$$

$$G \frac{M_{s}m_{p}}{R^{2}} = \frac{m_{p}(2\pi R/T)^{2}}{R}$$

$$\therefore T = 2\pi \sqrt{\frac{R^{3}}{M_{s}G}}$$
Kepler's Third Law

Example: Calculate the mass of Sun using the facts that the period of the Earth's orbit around the Sun is 3.156×10^7 s and its distance from the Sun is 1.496×10^{11} m.

Solution

$$T = 2\pi \sqrt{R^3 / (M_S G)}$$

$$\therefore M_S = 4\pi^2 R^3 / (T^2 G)$$

$$\therefore M_S = 4\pi^2 \frac{(1.496 \times 10^{11})^3}{(3.156 \times 10^7)^2 (6.67 \times 10^{-11})}$$

$$\therefore M_S = 1.99 \times 10^{30} \text{ Kg}$$

PHYN001 | Unit 03

Example: Consider a satellite of mass m moving in a circular orbit around the Earth at a constant speed v and at an altitude h above the Earth's surface.

• Determine the speed of the satellite in terms of G, h, R_E (the radius of the Earth), and M_E (the mass of the Earth).

Solution:

$$G \frac{Mm}{(R+h)^2} = \frac{mv^2}{R+h}$$
$$\therefore v = \sqrt{MG/(R+h)}$$

Example: If the satellite is geosynchronous (appearing to remain over a fixed position on the Earth), how fast is it moving through space?

Solution

$$T_{Sat} = T_E = 24 \times 60 \times 60$$

$$T_{Sat} = 2\pi \sqrt{\frac{(R+h)^3}{MG}} = 2\pi \sqrt{\frac{(R+h)^3}{(5.98 \times 10^{24})(6.67 \times 10^{-11})}}$$

$$\therefore R+h = 4.23 \times 10^7 \text{ m}$$

$$v = \sqrt{MG/(R+h)}$$

$$\therefore v = 3.07 \times 10^3 \text{ m/s}$$

Contents

- ✓ Newton's Law of Universal Gravitation
- ✓ Free-Fall Acceleration and the Gravitational Force
- ✓ Kepler's Laws and the Motion of Planets
- □ The Gravitational Field
- Gravitational Potential Energy
- Energy Considerations in Planetary and Satellite Motion

- A new approach came after Newton's death describing interactions between not-in-contact objects: Gravitational Field that exists at every point in space.
- When a particle of mass m is placed at a point where the gravitational field is g, the particle experiences a force $F_g = mg$
- The gravitational field g is defined as $g = \underline{F}_g/m$
- We call the object creating the field the source particle.

 \underline{g} in the vicinity of a uniform spherical m varys in direction and magnitude.

• $\left| \underline{g} \right|$ at any point is the magnitude of the free-fall acceleration at that point.

 \underline{g} near the Earth's surface is uniform in both direction and magnitude.

• The Earth's gravitational field as a vector:

$$\underline{g} = -\frac{GM_E}{r^2}\hat{\underline{r}}$$

- \hat{r} : unit vector pointing from center of Earth to where we are calculating the field.
- The negative sign indicates that the field points toward the center of the Earth

Contents

- ✓ Newton's Law of Universal Gravitation
- ✓ Free-Fall Acceleration and the Gravitational Force
- ✓ Kepler's Laws and the Motion of Planets
- ✓ The Gravitational Field
- Gravitational Potential Energy
- Energy Considerations in Planetary and Satellite Motion

Gravitational force is conservative and a potential energy can be defined for it

The change in gravitational potential energy of a system

• Work done by external force against gravitational force \underline{F}_g to move a particle from r_i to r_f

$$\Delta U = U_f - U_i = -\int_{r_i}^{r_f} F_g \, dr$$

$$U_{f} - U_{i} = -GM_{E}m\left(\frac{1}{r_{f}} - \frac{1}{r_{i}}\right) = \frac{-GM_{E}m}{r_{f}} - \frac{-GM_{E}m}{r_{i}}$$
Taking $U_{i} \to 0$ at $r_{i} \to \infty$ (reference potential)
 $\therefore U_{f} = -G\frac{M_{E}m}{r_{f}}$ Valid for
 $r \ge R_{E}$
The negative sign is because
of our choice of U_{ref} F_{g}

For small vertical displacement Δh near the Earth's surface

$$\Delta U = -GM_E m \left(\frac{1}{r + \Delta h} - \frac{1}{r} \right)$$

$$\therefore \Delta U = -GM_E m \frac{r - (r + \Delta h)}{r(r + \Delta h)} \simeq -GM_E m \frac{-\Delta h}{r^2}$$

$$\therefore g(r) = G \frac{M_E}{r^2} \approx g$$

$$\therefore \Delta U = mg\Delta h$$

Binding Energy

- The absolute value of the potential energy can be thought of as the binding energy.
- If an external agent applies a force larger than the binding energy, the excess energy will be in the form of kinetic energy of the particles when they are at infinite separation.

Example

How much work is done by the Moon's gravitational field on a 1000 kg meteor as it comes in from outer space and impacts on the Moon's surface? $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ $M_{Moon} = 7.36 \times 10^{22} \text{ Kg} R_{Moon} = 1.74 \times 10^6 \text{ m}$

Solution

$$W_g = -\Delta U = + \frac{GM_{Moon}m}{R_{Moon}}$$

 $W = \frac{6.67 \times 10^{-11} \cdot 7.36 \times 10^{22} \cdot 1000}{1.74 \times 10^6} = 2.9 \times 10^9$ Joule

Contents

- ✓ Newton's Law of Universal Gravitation
- ✓ Free-Fall Acceleration and the Gravitational Force
- ✓ Kepler's Laws and the Motion of Planets
- ✓ The Gravitational Field
- ✓ Gravitational Potential Energy

Energy Considerations in Planetary and Satellite Motion

ENERGY CONSIDERATIONS IN PLANETARY AND SATELLITE MOTION

Since gravitational forces are conservative, in the absence of any other forces the total mechanical energy will be conserved

$$E = K + U = \frac{1}{2}mv^2 - G\frac{Mm}{r} = \text{Constant}$$
$$\therefore \frac{1}{2}mv_f^2 - G\frac{Mm}{r_f} = \frac{1}{2}mv_i^2 - G\frac{Mm}{r_i}$$

E may be positive, negative, or zero, depending on v.

However *E* is necessarily less than zero in a bound system

ENERGY CONSIDERATIONS IN PLANETARY AND SATELLITE MOTION

For an orbiting satellite

$$F_g = F_c$$

$$G \frac{Mm}{r^2} = \frac{mv^2}{r}$$

$$\therefore K = \frac{1}{2}mv^2 = \frac{1}{2}G \frac{Mm}{r} = -\frac{1}{2}U$$

$$\therefore E = K + U = \frac{1}{2}U = -\frac{1}{2}G \frac{Mm}{r} \quad \text{Negative} \quad (Bound)$$

ENERGY CONSIDERATIONS IN PLANETARY AND SATELLITE MOTION

Example

A 1000 kg satellite orbits the Earth at an altitude of 100 km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 200 km? (b) What are the changes in the system's kinetic energy and potential energy?

Solution

$$E = \frac{1}{2}U = -\frac{GM_Em_s}{2r} \rightarrow \Delta E = E_f - E_i = -\frac{GM_Em_s}{2}\left(\frac{1}{r_f} - \frac{1}{r_i}\right) = 469 \text{ MJ}$$
$$\Delta U = 2\Delta E = 938 \text{ MJ} \qquad \Delta K = -\Delta E = -469 \text{ MJ}$$

Contents

- ✓ Newton's Law of Universal Gravitation
- ✓ Free-Fall Acceleration and the Gravitational Force
- ✓ Kepler's Laws and the Motion of Planets
- ✓ The Gravitational Field
- ✓ Gravitational Potential Energy
- ✓ Energy Considerations in Planetary and Satellite Motion

UNIVERSAL GRAVITATION (SUMMARY)

$$\underline{F}_{12} = -G \frac{m_1 m_2}{r_{12}^2} \hat{\underline{r}}_{12} = -\underline{F}_{21}$$

$$\underline{F} = m\underline{g}$$

$$\underline{g} = -\frac{GM_E}{r^2} \hat{\underline{r}}_{12}$$

$$U(r) = -G \frac{M_E m}{r}$$

$$In \text{ Orbit}$$

$$G \frac{mM_E}{r^2} = m \frac{v^2}{r}$$

$$T^2 \propto R^3$$

$$E = K + U = \frac{1}{2}U = -K < 0$$