INTRODUCTION

Dye-surfactant interactions in aqueous buffered systems have been drawing interest of many researchers due to their industrial applications\(^1\). And aqueous micellar media are widely used in different areas of analytical chemistry and several reviews concerning their analytical applications have been published\(^2-5\). One important property of micelles is their ability to solubilize a wide variety of compounds which are insoluble or slightly soluble in water. The incorporation of a solute into micellar systems can lead to important changes in its molecular properties. Another important effect of micellar systems is that they can modify reaction rates and, to some extent, the nature of the products. Micelles can inhibit or accelerate reaction rates (by up to several orders of magnitude) and also shift equilibria (acid-base). Surfactants usually affect spectral parameters: the intensity and shifts in the absorption bands can be increased and shifts in the absorption maxima of reagents are observed\(^6\). Micelles can affect the apparent pK\(_a\) values of the reagents due to a combination of electrostatic and microenvironment effects of the micelle\(^6,7\). Moreover, the acid-base equilibrium involved in the micelle is also influenced by surfactants\(^8,11\). The acid dissociation constants (i.e., pK\(_a\) values) can be a key parameter for understanding and quantifying chemical phenomena such as reaction rates, biological activity, biological uptake, biological transport and environmental fate\(^12\).

Merocyanine dyes are well known as solvatochromic and photoreactive compounds which are also sensitive to the medium acidity\(^13\). Due to these properties they are potentially useful in many areas such as solar energy conversion\(^14,15\), photosensitizers\(^16\), phototherapy\(^17\), in laser doublers and as liquid crystals\(^18\). Merocyanine dyes are also useful as electrochromic compounds for membrane potentials and high-voltage sensitivity\(^19,20\).

In the present article, we applied the physical constraints approach to determine the acidity constant of 1-methyl-4-[4'-aminostyryl]quinolinium iodide (Q = NH\(_2\)) (Chart 1) in water, water-sodium dodecyl sulfate in ground and excited states.

![Chart 1](http://example.com/chart1.png)

EXPERIMENTAL

1-Methyl-4-[4-aminostyryl]quinolinium iodide was prepared by literature method\(^21,22\) as follows: \(p\)-amino benzaldehyde (10 mmol) dissolved in a minimum amount of absolute ethanol, was added drop wise to (10 mmol) of 1-methyl-4-
methyl quinolininium iodide in 25 mL of absolute ethanol. 1.5 mL piperdine was added and the mixture stirred for 20 h at room temperature and then refluxed for 0.5 h. The pale brown precipitate was filtered and recrystallized twice for distilled water. The melting point was determined and found to be 257-259 °C, of 1-methyl-4-[4'-amino styryl]quinolinium iodide, (Q = NH2) (Chart 1).

UV-visible absorption spectra measurements were carried out using Perkin-Elmer lambda 40 spectrophotometer, was matched quartz cells with pathlength of 1 cm. The fluorescence spectra measurements were recorded on a Shimadzu RF-5000 Luminescence Spectrometer, using quartz cells and a 1 cm cuvette holder. Fluorescence intensities were measured at right angles to the incident light. The slight width was at narrow entrance in order to minimize the intensity of the incident light. The pH of the buffer solutions were checked using a Janewy 2020 pH meter.

The samples were prepared according to the following procedure: for the aqueous buffer solutions, 0.4 mL of the stock solution of 1 × 10^{-3} mol dm^{-3} (Q = NH2) dye and 5 mL of double concentration pHs buffer solution was mixed in 10 mL volumetric flask. The mixture was dissolved and completed to 10 mL with double distilled water. For the micellar solution, 0.4 mL of the stock solution of 1 × 10^{-3} mol dm^{-3} (Q = NH2) dye and 2.5 mL of 4 × 10^{-2} mol dm^{-3} sodium dodecyl sulfate was added to 5 mL of double concentration pHs buffer solution. The mixture was dissolved and completed to 10 mL with double distilled water. The concentration of the micelles was 1 × 10^{-2} mol dm^{-3}, which was above the critical micelle concentration (CMC). The final concen-tration of (Q = NH2) dye was 4 × 10^{-3} mol dm^{-3} and was constant at all different aqueous and micellar solutions.

RESULTS AND DISCUSSION

Spectra in aqueous buffer solution: The optical absorption spectra of 4 × 10^{-3} mol dm^{-3} of (Q = NH2), in aqueous buffer solutions at different pHs showed that there are two forms, the quinonoid structure with mono cation on the amino group Q = NH2 which is considered the basic form (Ib) and the benzeniod structure Q = NH2 with double cations in which the lone pair of electrons are localized with the positive charge present on the heterocyclic nitrogen atom, which is considered the acidic form (Ia) this indicated by Scheme-I. A typical absorption spectra of 1-methyl-4-[4'-amino styryl]quinolinium iodide, (Q = NH2) is shown in Fig. 1a. These spectra exhibit a well-defined isobestic point at 396 nm, denoting the existence of an equilibrium (essentially an acid-base) between the Q = NH2, which has an absorption maximum at 446 nm and the other form Q = NH2, which has an absorption maximum at 368 nm as in (Fig. 1a). This means that these dyes could be used as acid indicators, where in high pH giving rise Q = NH2 and Q = NH2 at low pH.

![Absorption spectra of 1-methyl-4-[4'-amino styryl]quinolinium iodide (c = 4 × 10^{-3} mol dm^{-3}) in aqueous buffer solutions. (b) Determination of pK_a of 1-methyl-4-[4'-amino styryl]quinolinium iodide (c = 4 × 10^{-3} mol dm^{-3}) in aqueous buffer solutions](image)

Being these mercocyanine dye similar to weak acids in their ionization (Scheme-I), its of interest to calculate their acid dissociation constant pK_a values in both aqueous and micellar solutions in both ground and excited states to obtain a better understanding of its chemical and physical behaviour in different environments of different pHs.

The pK_a value has been calculated from the following eqn. 1

\[\text{pH} = \text{pK}_a + \log \left(\frac{A - A_{\text{min}}}{A_{\text{max}} - A} \right) \]

where A_{max} is the maximum absorbance of the protonated form Q = NH1, or Q = NH2 at a given wavelength, A_{min} is the minimum absorbance from the plot of log (A - A_{min})/(A_{max} - A) versus pH is a linear relation as shown in Fig. 1b the pK_a was calculated as 3.24 (Table-1).

The fluorescence spectra of the same concentration of Q = NH2 were measured in buffer solutions of different pHs excited at the isobestic point for the ground state \(\lambda_{\text{exc}} \) 396 nm (Fig. 2), the fluorescence spectra exhibit two bands, the first one is very broad emission band at \(\lambda_{\text{em}} \) 462 nm and the anther

<table>
<thead>
<tr>
<th>TABLE-1</th>
<th>SPECTRAL DATA AND ACID DISSOCIATION CONSTANTS OF GROUND AND FIRST EXCITED SINGLET STATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>pK_a</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Aqueous buffer</td>
<td>3.24</td>
</tr>
<tr>
<td>Aqueous micelles</td>
<td>3.72</td>
</tr>
</tbody>
</table>

(a) in acid medium; (b) in alkaline medium; ± s = 0.04.

Scheme-I: Basic and acidic forms of 4×10^{-5} mol dm$^{-3}$ of 1-methyl-4-[4'-aminostyryl]quinolinium iodide, (Q = -NH$_2$I$^-$) in the ground and excited states in aqueous and sodium dodecyl sulphate (SDS) micellar solutions.

wide band at λ_{em} 524 nm. Also a weak fluorescence intensity was observed at pH range from 4 to 5 with only one band at 462 nm. The fluorescence intensity increases in the pH range 3.5-1.1, but tends to a limiting value at pH 1.1, with attribution at pH 2.5.

The acid dissociation constants pK* of the studied compound in excited state were calculated by utilizing the so-called Forester energy-cycle25,26. According to this cycle:

$$pK^* = pK + \left(\frac{0.625}{T} \right) (\Delta \nu)$$ \hspace{1cm} (2)

where pK and pK* are the acid dissociation constants in the ground and excited states, respectively and $\Delta \nu$ represents the frequency difference in cm$^{-1}$ between the values of the O-O band of the electronic transition energy for the mono and dication forms existing in an equilibrium state. The results of such calculations are summarized in Table-1. Taking an average value of $\Delta \nu_{a-b} = 1459$ cm$^{-1}$ for the absorption and fluorescence transition, the pK* in the first excited state can be determined as 0.19. As expected, the compound is considerably more acidic in the first excited state than in the ground state. From the electronic structure of Q = -NH$_2$I$^-$, it is expected that the quinonoid structure can be easily protonated at the aromatic amino group and the positive charge localized with lone pair of electrons which is present on the other heterocyclic nitrogen atom and increase the -C=C- double bond character and stabilizing the benzeniod structure (Scheme-I).

Spectra in aqueous micellar solution: The absorption spectra of Q = -NH$_2$I$^-$ were carried out in aqueous micellar solution above the critical micelles concentration (CMC) at different buffer solutions. As shown in Fig. 4a, this spectrum shows that regular variation between the absorption spectra with different pHs but was excited at another wavelength λ_{exc} 368 nm (Fig. 3). This shows that a broad emission band at wavelength 460 nm with pH 1.1. The fluorescence spectra decreases with increasing the pH, with a hypsochromic shift at λ_{em} 424 nm for pH 5. This explained as due to the interaction between the proton and the amino lone pair of electrons at lower pH which stabilize the benzeniod structure (Scheme-I).

Also the fluorescence spectra of the Q = -NH$_2$I$^-$ were measured in buffer solutions of different pHs but was excited at another wavelength λ_{exc} 368 nm (Fig. 3). This shows that a broad emission band at wavelength 460 nm with pH 1.1. The fluorescence spectra decreases with increasing the pH, with a hypsochromic shift at λ_{em} 424 nm for pH 5. This explained as due to the interaction between the proton and the amino lone pair of electrons at lower pH which stabilize the benzeniod structure (Scheme-I).
to be 3.72, which is slightly higher than in aqueous solution. The slight shift in the ground state pK\textsubscript{a} of the dye in sodium dodecyl sulfate micellar solution illustrates the effect of micelles on protonation/deprotonation of the dye at different pH and provides as well defined difference between aqueous and micellar solution. It is of interest to explain that the slight increase of the pK\textsubscript{a} in micellar medium is due to the ability of the anionic sodium dodecyl sulfate micelles to concentrate the protons in micellar interface and slightly suppress the protonation the aromatic amino group27,28.

The excited state protolytic equilibrium was also been studied in micellar solution at pH ranges of 1.1-4.5 as shown in Fig. 5. The fluorescence spectra at λ_{exc} = 500 nm shows a weak fluorescence intensity for pH = 1.1, with hypsochromic shift to λ_{em} = 579 nm. With increasing pH, the fluorescence intensity increases with a bathochromic shift and a broad band is obtained at λ_{em} = 614.4 nm also the emission spectra of the Q = N'\textsubscript{H} has been studied at λ_{exc} = 397 nm. As can be seen in Fig. 6, a measurable broad band is shown at λ_{em} = 462 nm for pH = 1.1 and the fluorescence intensity decreased with increasing the pH with hypsochromic shift to λ_{em} = 457.6 nm at pH = 4.5. By applying Forester energy-cycle25,26, the pK* in a sodium dodecyl sulfate micellar system is calculated to be -1.95. Table-1 and Scheme-I shows the spectral data and the dissociation constants for the ground and first excited states.
protolytic reaction in the ground state is suppressed when the concentration of the proton increases in the interface, but for the excited singlet state, the rate of protonation/deprotonation increases with the effect of diffusion, indicating that the charge effect is much larger than dielectric effect.

REFERENCES