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Equivalent Complex Baseband Representation: Signals

Consider a real-valued signal s(t) with spectrum S(f ) = F{s(t)},

Analytic Signal

S+(f ) = 2u(f )S(f )⇔ s+(t)

Show that:

s+(t) = s(t) + j
1

πt
∗ s(t)

= s(t) + j ŝ(t)

= s(t) + jH{s(t)}, H{.} is the Hilbert Transform

Hilbert Filter

h(t) =
1

πt
H(f ) =


j , f < 0

0, f = 0

−j , f > 0

Ŝ(f ) = H(f )S(f )
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Equivalent Complex Baseband Representation: Signals

Baseband Signal = Complex Envelope

Sb(f ) =
1√
2
S+(f + fc)

sb(t) =
1√
2
s+(t)e−j2πfc t

With mathematical manipulation,

s(t) + j ŝ(t) =
√

2sb(t)e j2πfc t

s(t) =
√

2<{sb(t)e j2πfc t}
=
√

2<{sb(t)} cos(2πfct)−
√

2={sb(t)} sin(2πfct)
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Equivalent Complex Baseband Representation: Signals

Spectrum Analysis

S(f ) =

∫ ∞
−∞

[√
2<{sb(t)e j2πfc t}

]
e−j2πftdt

=
1√
2

[Sb(f − fc) + S∗(−f − fc)]

Energy

It can be shown that:

E =

∫ ∞
−∞

s2(t)dt =

∫ ∞
−∞
|sb(t)|2dt
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Equivalent Complex Baseband Representation: Signals
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Equivalent Complex Baseband Representation: Signals

Quadrature Modulation

s(t) =
√

2x(t) cos(2πfct)−
√

2y(t) sin(2πfct)
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Equivalent Complex Baseband Representation: Signals

Demodulation: Using Hilbert Filter

x(t) =
1√
2

[s(t) cos(2πfct) + ŝ(t) sin(2πfct)]

y(t) =
1√
2

[ŝ(t) cos(2πfct)− s(t) sin(2πfct)]
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Equivalent Complex Baseband Representation: Signals

Demodulation: Using Low Pass Filter (Band-limited Signals)

x(t) = LPF{
√

2s(t) cos(2πfct)}
y(t) = LPF{−

√
2s(t) sin(2πfct)}
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Equivalent Complex Baseband Representation: Systems

Analytic System

H+(f ) = 2u(f )H(f )⇔ h+(t)

Baseband System

Hb(f ) =
1

2
H+(f + fc)

Hb(f − fc) =

{
H(f ), f ≥ 0

0, f < 0

H(f) = Hb(f − fc) + H∗b(−f − fc)

h(t) = 2<{hb(t)ej2πfct}
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Response of a Bandpass Systems to a Bandpass Signal

Show that:

R(f ) = H(f )S(f ) =
1√
2

[Rb(f − fc) + R∗b(−f − fc)]

Note: Use the narrow-band assumptions, Sb(f − fc)H∗b(−f − fc) = 0

Conclusion

We can perform linear filtering operations always in the equivalent
baseband domain
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Bandpass Noise Process

Assume a narrow-band bandpass WSS noise process, n(t), with bandwidth
B and center frequency fc , i.e.,

ΦNN(f )

{
6= 0, fc − B/2 ≤ |f | ≤ fc + B/2

= 0, otherwise

Defining the equivalent complex baseband noise process as
z(t) = x(t) + jy(t), then

n(t) =
√

2<{z(t)e j2πfc t}

Show that: For n(t) to be WSS,

φXX (τ) = φYY (τ) (1)

φXY (τ) = −φYX (τ) (2)

φNN(τ) = 2 [φXX (τ) cos(2πfcτ) + φXY (τ) sin(2πfcτ)] (3)
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Bandpass Noise Process

ACF and PSD

Show that: For the baseband equivalent, z(t),

φzz(τ) = 2 [φXX (τ) + jφXY (τ)] (4)

φNN(τ) = <{φzz(τ)e j2πfcτ} (5)

ΦNN(f ) =
1

2
[ΦZZ (f − fc) + ΦZZ (−f − fc)] (6)

Show that:

1 φXY (τ) is an odd function

2 If x(t) and y(t) are uncorrelated, then

φzz(τ) = 2φXX (τ)

ΦZZ (f ) = ΦZZ (−f )
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White Noise

If ΦNN(f ) can be approximated by a constant (flat) in the region of
interest, i.e.

ΦNN(f ) =


N0

2
, fc − B/2 ≤ |f | ≤ fc + B/2

0, otherwise

Then,

ΦZZ (f ) =

{
N0, |f | ≤ B/2

0, otherwise

Then,

φZZ (τ) = N0
sin(πBτ)

πτ
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White Noise

Definition

A noise process with flat spectrum for all frequencies is also called a white
noise process. When B →∞,

ΦZZ (f ) = N0

φzz(τ) = N0δ(τ)

Since ΦZZ (f ) is an even function, the quadrature components of z(t) are
uncorrelated, i.e., φXY (τ) = 0. Moreover,

φXX (τ) = φYY (τ) =
1

2
φZZ (τ) =

N0

2
δ(τ)

This means that x(t) and y(t) are mutually uncorrelated, white processes
with equal infinite variances.
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White Gaussian Noise

Definition

The quadrature components x(t) and y(t) of z(t) are mutually
uncorrelated white Gaussian processes.

σ2 = φXX (0) = φYY (0) =
N0

2
B

White Gaussian Noise through a LPF of bandwidth B, results in a filtered
noise z̃ = x̃ + j ỹ , such that

pZ (z̃) = pXY (x̃ , ỹ) =
1

πσ2
Z

exp

[
−|z̃ |

2

σ2
Z

]
Since this PDF is rotationally symmetric, the corresponding equivalent
baseband noise process is also referred to as circularly symmetric
complex Gaussian noise.
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System Equivalence

A passband communication system that is impaired by stationary white
Gaussian noise is equivalent to a baseband system that is impaired by
circularly symmetric white Gaussian noise.
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Signal Space Representation of Signals

Signal Space

CauchySchwarz inequality

GramSchmidt procedure

Orthogonal expansion of signals

Representation of signals by Basis Functions

Euclidean distance between signals

Refer to [Proakis, Section 2.2] and [?, Section 2.6]
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M-ary Pulse Amplitude Modulation

Definitions

Memoryless: The transmitted waveform depends only on the current
k bits but not on previous bits

M-ary Pulse Amplitude Modulation (MPAM) = M-ary Amplitude
Shift Keying (MASK).

M-PAM

The M-PAM waveform in passband representation is given by

sm(t) =
√

2<{Amg(t)e j2πfc t}
=
√

2Amg(t) cos(2πfct), m = 1, 2, · · ·M

Baseband Representation

sbm(t) = Amg(t)
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M-ary Pulse Amplitude Modulation
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M-PAM

Am = (2m − 1−M)d ,m = 1, 2, · · · ,M, are the M possible
amplitudes or symbols, where 2d is the distance between two
adjacent amplitudes.
g(t): real-valued signal pulse of duration T .
Bit interval (duration) Tb = 1/R, where R is the bit rate to the
modulator. The symbol duration is related to the bit duration by
T = kTb.
PAM symbol rate RS = R/k symbols/s.

Transmitted Waveform

s(t) =
∞∑

k=−∞
sm(t − kT )

sb(t) =
∞∑

k=−∞
Am [k] g(t − kT )
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M-PAM

Energy

Em =

∫ T

0
|sbm(t)|2dt = A2

mEg

Signal Space Representation

sbm(t) = smfb(t), where fb(t) =
g(t)√
Eg

, sm =
√
EgAm
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M-PAM

Euclidean Distance Between Signal Points

dmn =
√

(sm − sn)2

= 2
√
Egd |m − n|

dmin = 2
√
Egd

Correlation

In general, the (cross)correlation between two signals allows to quantify
the similarity of the signals. The correlation of two signals is defined as

ρmn =
1√
EmEn

∫ ∞
−∞

sm(t)sn(t)dt

Special Case: M=2
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M-ary Phase Shift Keying

M-PSK

The M-PSK waveform in passband representation is given by

sm(t) =
√

2<{e j2π
m−1
M g(t)e j2πfc t}

=
√

2g(t) cos(2πfct + Θm)

=
√

2g(t) cos(Θm) cos(2πfct)−
√

2g(t) sin(Θm) sin(2πfct)

Baseband Representation

sbm(t) = e j2π
m−1
M g(t) = e jΘmg(t)

Signal Energy

Em =

∫ T

0
|sbm(t)|2dt = Eg
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M-PSK

Signal Space Representation

sbm(t) = sbmfb(t), where fb(t) =
g(t)√
Eg

, sbm =
√
Ege

jΘm

sm(t) = sm1f1(t) + sm2f2(t)

where,

f1(t) =

√
2

Eg
g(t) cos(2πfct), sm1 =

√
Eg cos(Θm)

f2(t) = −

√
2

Eg
g(t) sin(2πfct), sm2 =

√
Eg sin(Θm)

In the complex baseband, we get one basis function but the coefficients
sbm are complex valued. In the passband, we have two basis functions and
the elements sm1, sm2 are real valued.
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M-PSK

Euclidean Distance Between Signal Points

dmn =
√

(sm − sn)2

=
√

2Eg

√
1− cos

(
2π

m − n

M

)

dmin =
√

2Eg

√
1− cos

(
2π

M

)
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M-ary Quadrature Amplitude Modulation

M-QAM

The M-QAM waveform in passband representation is given by

sm(t) =
√

2<{(Acm + jAsm)g(t)e j2πfc t}
=
√

2<{Amg(t)e j2πfc t}
=
√

2Acmg(t) cos(2πfct)−
√

2Asmg(t) sin(2πfct)

Baseband Representation

sbm(t) = Amg(t) = (Acm + jAsm)g(t)

Signal Energy

Em =

∫ T

0
|sbm(t)|2dt = |Am|2Eg
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M-QAM

Signal Space Representation

sbm(t) = sbmfb(t), where fb(t) =
g(t)√
Eg

, sbm =
√
EgAm

sm(t) = sm1f1(t) + sm2f2(t)

where,

f1(t) =

√
2

Eg
g(t) cos(2πfct), sm1 =

√
EgAcm

f2(t) = −

√
2

Eg
g(t) sin(2πfct), sm2 =

√
EgAsm

In the complex baseband, we have onedimensional complex signal space.
In the passband, we have twodimensional real signal space.
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M-QAM

Euclidean Distance Between Signal Points

dmn =
√

(sm − sn)2

=
√
Eg |Am − An|

=
√

Eg

√
(Acm − Acn)2 + (Asm − Asn)2

For Acm,Asm ∈ {±d ,±3d , · · · ,±(
√
M − 1)d},

dmin = 2
√
Egd
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M-ary Frequency Shift Keying

M-FSK

The M-FSK waveform in passband representation is given by

sm(t) =

√
2E

T
<{e j2πm∆fte j2πfc t}

=

√
2E

T
cos(2π(m∆f + fc)t)

Baseband Representation

sbm(t) =

√
E

T
e j2πm∆ft

Signal Energy

Em =

∫ T

0
|sbm(t)|2dt = E
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M-FSK

Correlation and Orthogonality

ρbmn =
1√
EmEn

∫ ∞
−∞

sbm(t)s∗bn(t)dt

= sinc ((m − n)∆fT ) e jπ(m−n)∆fT

ρmn = <{ρbmn}
= sinc ((m − n)∆fT ) cos(π(m − n)∆fT )

= sinc (2(m − n)∆fT )

ρmn = 0 for ∆fT =
k

2
, k ∈ {±1,±2, · · · }

Smallest frequency separation ∆f = 1/2T , at which

ρbmn =

{
0, (m − n) even

2j
π(m−n) , (m − n) odd
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M-FSK

Signal Space Representation ∆fT = 1/2

fm(t) =

√
2

T
cos(2πfct + πmt/T )

s1 =
[√

E 0 · · · 0
]T

s2 =
[
0
√
E 0 · · · 0

]T
· · ·

sM =
[
0 0 · · ·

√
E
]T
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M-FSK

Euclidean Distance Between Signal Points

dmn =
√

(sm − sn)2

=
√

2E

dmin =
√

2E
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Biorthogonal Signals

A set of 2M biorthogonal signals is derived from a set of M orthogonal
signals {sm(t)} by including the negative signals {−sm(t)}.
For biorthogonal signals, the Euclidean distance between pairs of signals is

dmn =
√

2E

or dmn = 2
√
E

The correlation is

ρmn = 0

or ρmn = −1
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Biorthogonal Signals
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Simplex Signals

Usually, zero-mean waveforms are preferred. Therefore, it is desirable to
modify the orthogonal signal set to a signal set with zero mean. This can
be done by modifying the signal set to become

śm = sm − s̄,

where,

s̄ =
1

M

M∑
1

sm =

√
E

M
1M

Energy

Em = E

(
1− 1

M

)
Correlation

ρmn = − 1

M − 1
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Simplex Signals
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Simplex Signals
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Modulation With Memory

Refer to [Proakis, Section 3.3]
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Optimum Receivers for AWGN Channel

Problem Statement

In symbol interval 0 ≤ t ≤ T , information is transmitted using one of M
possible waveforms sm(t), 1 ≤ m ≤ M.
The received passband signal r(t) is corrupted by real-valued AWGN, n(t),
such that

r(t) = sm(t) + n(t), 0 ≤ t ≤ T

rb(t) = sbm(t) + z(t), 0 ≤ t ≤ T

The receiver’s task is to make the best decision to determine sm(t) from
observing r(t).

Note:

ΦNN(f ) =
N0

2
ΦZZ (f ) = N0
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Optimum Receiver for AWGN Channel

1 Demodulation
Transform the received signal into N-dimensional vector, forming a
sufficient statistic

r = [r1 r2 · · · rN ]T

Note:

The transmit waveforms can be represented by a set of N orthogonal
basis function
The noise require infinite number of basis functions, however, only
those in the signal space of the N basis functions are relevant

2 Detection
Determine an estimate sm(t) based on the vector r
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Correlation Demodulation

The elements of the sufficient statistic r are obtained by correlating the
received signal r(t) with the basis functions, fk(t)

rk =

∫ T

0
r(t)f ∗k (t)dt

=

∫ T

0
sm(t)f ∗k (t)dt +

∫ T

0
n(t)f ∗k (t)dt

= smk + nk

The received signal can be represented as

r(t) =
N∑

k=1

rk fk(t) + ń(t)

where ń(t) = n(t)−
N∑

k=1

nk fk(t)
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Correlation Demodulation
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Correlation Demodulation

Properties of nk
1 n(t) is a Gaussian process, then nk is a Gaussian RV

2 Mean
E{nk} = 0

3 Covariance

E{nkn∗m} =
N0

2
δ[k −m]

4 Noise components are zero-mean, mutually uncorrelated Gaussian RVs

Effect of ń(t)

E{ń(t)r∗k } = 0

Then, r and ń(t) are uncorrelated ⇒ statistically independent (why?)
Then r is a sufficient statistic for the detection of sm(t).
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Matched Filter

Instead of the correlators, we can use linear filters with impulse responses

hk(t) = f ∗k (T − t), 0 ≤ t ≤ T

Hk(f ) = e−j2πfTF ∗k (f )

The filter output, sampled at t = T is given by

yk(T ) =

∫ T

0
r(τ)f ∗k (τ)dτ = rk

Use the Cauchy-Schwartz inequality to show that the Matched
Filter maximizes the SNR, such that

SNR =
E

N0/2
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Matched Filter
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Optimal Detection

Problem Statement

Using the sufficient statistic obtained from the demodulation step, we
need to find the optimum detector, where the optimality criterion is taken
as the probability for correct detection shall be maximized, i.e., probability
of error shall be minimized.

Posteriori Probability

P (sm̃|r) , m̃ = 1, 2, · · · ,M

The probability of error is minimized if the chosen symbol sm̃ maximizes
the posteriori probability.
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Maximum a Posteriori (MAP) Decision Rule

MAP

m̂ = argmaxm̃{P (sm̃|r)}

Using Bayes rule, the MAP rule can be simplified to

m̂ = argmaxm̃{p (r|sm̃)P (sm̃)}

Note:

p(r) =
M∑

m=1

p (r|sm̃)P (sm̃)
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Maximum Likelihood (ML) Decision Rule

In some applications, P (sm̃) is unknown at the receiver. Neglecting the
influence of this priori probability, the ML rule is obtained

ML

m̂ = argmaxm̃{p (r|sm̃)}

Note: For equiprobable priori probabilities, the MAP and ML rules are
identical.
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ML Rule for AWGN Channel

For AWGN channel,

p (r|sm̃) =
1

(πN0)N/2
exp

[
− 1

N0

N∑
k=1

|rk − sm̃k |2
]

After simplification,

ML for AWGN

m̂ = argminm̃{||r − sm̂||2}

This is equivalent to choosing the vector sm̂ with the minimum Euclidean
distance to the received vector ⇒ Decision Regions in signal space.
It can be alternatively represented as

m̂ = argmaxm̃{
∫ T

0
r(t)sm̃(t)dt − 1

2
Em̃}
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ML Rule for AWGN Channel
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Optimum Receiver Example - PAM

Assume a rectangular pulse shape g(t) = a, 0 ≤ t ≤ T

1 Demodulator

Eg = a2T - f (t) =
1√
T
, 0 ≤ t ≤ T - rb =

√
EgAm + z - σ2

z = N0

p (rb/Am) =
1√
πN0

exp

[
− 1

N0
|rb −

√
EgAm|2

]
2 Detector

m̂ = argminm̃{|rb −
√
EgAm̃|2}
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Performance of Optimum Receivers: Binary Modulation

Binary PAM

rb =
√
EgAm + z

Decision is based on the real part of rb

rR = <{rb} =
√
EgAm + <{z}

Conditional error probability

P(e|s−) =

∫ ∞
0

prR (rR |s−)drR = Q

(√
2Eg

N0
d

)

P(e|s+) =

∫ 0

−∞
prR (rR |s+)drR = Q

(√
2Eg

N0
d

)
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Performance of Optimum Receivers: Binary Modulation

Binary PAM

Bit Error Probability (BEP) = Symbol Error Probability (SER)

Pb = P(s−)P(e|s−) + P(s+)P(e|s+)

= P(e|s−)

Pb = Q

(√
2
Eb

N0

)

Note: Eb = E{|
√
EgAm|2} = Egd

2

Binary PSK

BPSK is similar to Binary PAM
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Performance of Optimum Receivers: Binary Modulation

Binary Orthogonal Modulation (BFSK)

Transmitted signals

s1 =
[√

Eg 0
]T

s2 =
[
0
√
Eg

]T
Demodulated received signals

r =
[√

Eg + n1 n2

]T
or r =

[
n1

√
Eg + n2

]T
where, E{n2

1} = E{n2
2} = N0/2
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Performance of Optimum Receivers: Binary Modulation

Binary Orthogonal Modulation (BFSK)

Decision Rule

m̂ = argminm̃{||r − sm̂||2}
= argmaxm̃{r • sm̃}

Error Probabilities

P(e|s1) = P (r • s2 > r • s1)

= P
(
n2 − n1 >

√
Eb

)
where, n2 − n1 = X is a Gaussian RV with variance
E{|n2 − n1|2} = N0

Pb = Q

(√
Eb

N0

)
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Performance of Optimum Receivers: BPSK vs BFSK
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Performance of Optimum Receivers: M-PAM

1 The Transmitted Signal

sbm =
√
EgAm, Am = (2m − 1−M)d

2 Average Signal Energy

Es =
1

M

M∑
m=1

Em =
M2 − 1

3
d2Eg

3 Baseband Received Signal

rb = sbm + z , σ2
z = N0, σ

2
<{z} = N0/2

4 Decision Regions (Outer and Inner Signal Points)
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Performance of Optimum Receivers: M-PAM

Symbol Error Probability

PM =
1

M

[
(M − 2) + 2.

1

2

]
P
(
|<{rb} − sbm| > d

√
Eg

)
= 2

M − 1

M
Q

(√
2d2

Eg

N0

)

= 2
M − 1

M
Q

(√
6Es

(M2 − 1)N0

)

= 2
M − 1

M
Q

(√
6 log2(M)Eb

(M2 − 1)N0

)
Pb ≈ 1

log2(M)
PM
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Performance of Optimum Receivers: M-PSK

2-PSK

4-PSK

P4 = 2Q

(√
2Eb

N0

)[
1− 1

2
Q

(√
2Eb

N0

)]

M-PSK

PM ≈ 2Q

√2 log2(M)Eb

N0
sin
( π
M

)
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Performance of Optimum Receivers: M-QAM

4-QAM

M-QAM

PM ≤ 4Q

(√
3 log2(M)Eb

(M − 1)N0

)
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Upper Bound for Arbitrary Signal Constellations

1 Pairwise Error Probabilities

PEP(sµ → sν) = P (sµ transmitted, sν detected)

2 Union Bound

PM ≤
1

M

M∑
µ=1

M∑
ν=1,ν 6=µ

PEP(sµ → sν)

3 For Gaussian noise

PM ≤ 1

M

M∑
µ=1

M∑
ν=1,ν 6=µ

Q

√ d2
µν

2N0


≈ CMQ

√d2
min

2N0
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Comparison of Linear Modulation Techniques
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Comparison of Linear Modulation Techniques
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Comparison of Linear Modulation Techniques
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Comparison of Linear Modulation Techniques

As M increases, PAM and PSK become less favorable and the gap to
QAM increases.
The reason for this behavior is the smaller minimum Euclidean
distance dmin of PAM and PSK

For a given transmit energy, dmin of PAM and PSK is smaller since
the signal points are confined to a line and a circle, respectively

For QAM on the other hand, the signal points are on a rectangular
grid, which guarantees a comparatively large dmin
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Thank You
Questions?

samy.soliman@cu.edu.eg

http://scholar.cu.edu.eg/samysoliman
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