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Introduction
Statistical Decision Theory

1 Introduction to Communication Systems

2 Review on Probability Theory

3 Review on Stochastic Processes
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Elements of Communication Systems

Transmitter

Receiver
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Elements of Communication Systems: Transmitter

Transmitter
1 Information Source

Analog - Digital

2 Source Encoder
Represent the source signal as efficiently as possible (minimize the
redundancy)

3 Channel Encoder
Increase reliability of received data (add redundancy in a controlled
manner to information bits)

4 Digital Modulator
Transmit most efficiently over the (physical) transmission channel
(map the input bit sequence to a signal waveform which is suitable for
the transmission channel)
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Elements of Communication Systems: Transmitter

Receiver
1 Digital Demodulator

Reconstruct transmitted data symbols (binary or M-ary from
channelcorrupted received signal

2 Channel Decoder
Exploit redundancy introduced by channel encoder to increase
reliability of information bits

3 Source Decoder
Reconstruct original information signal from output of channel
decoder

Note: In advanced receivers, demodulation and decoding are sometimes
performed iteratively to enhance the receiver’s performance.
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Elements of Communication Systems: Transmitter

Channel
1 Examples of Physical Channel

Wireline - Optical Fiber
Wireless radio frequency (RF) channel - Optical Wireless Channel
Underwater Acoustic Channel - Storage Channel (CD, disc, etc.)

2 Channel Impairments
Noise (electronic, thermal, ...)
Nonlinearities, distortions, time-variance, ...
Interference

For the design of the transmitter and the receiver we need a simple
mathematical model of the physical communication channel that captures
its most important properties. This model will vary from one application
to another.
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Channel Types: AWGN

Additive White Gaussian Noise Channel - With Unknown Phase

r(t) = αe jφs(t) + n(t)

The transmitted signal experiences an unknown phase shift φ, which is
often modeled as a random variable, uniformly distributed in the interval
[−π, π). The transmitted signal is also attenuated by a factor of α, and
impaired by AWGN.
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Channel Types: Linear

Linearly Dispersive Channel (Linear Filter Channel)

r(t) = c(t) ∗ s(t) + n(t)

The transmitted signal is linearly distorted by c(t) and impaired by AWGN.
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Channel Types

Types of Channels

Multiuser channels

MIMO channels

Relaying channels

Fading channels

· · ·
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Analysis and Design of Communication Systems

Discussion:
What tools do we need for the analysis/design of communication systems?
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The Theory of Probability: Random Experiments

An essential tool in the design of digital communication systems.

Probability

Experiment

Outcome

Event

Probability - Axioms of Probability

Union - Intersection

Joint events and joint probabilities

Conditional probability

Statistical Independence
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Axioms of Probability

Axioms of Probability

Assume events A and B are subsets of the sample space S, i.e. A ⊂ S and
B ⊂ S

1 P(S) = 1

2 0 < P(A) < 1

3 If A ∩ B = φ, then P(A ∪ B) = P(A) + P(B)

Note: If A ∩ B 6= φ, then P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

c© Samy S. Soliman (Cairo University) ELC 623 Postgraduate Program 12 / 53



Joint Events and Joint Probability

Consider two experiments with outcomes Ai , i = 1, 2, · · · , n and
Bj , j = 1, 2, · · · ,m
If both experiments are carried out, then the outcome (Ai ,Bj) is assigned
the probability P(Ai ,Bj) with 0 ≤ P(Ai ,Bj) ≤ 1

1 If the outcome of Bj , j = 1, 2, · · · ,m are mutually exclusive, then

m∑
j=1

P(Ai ,Bj) = P(Ai )

2 If all the outcome of both Ai , i = 1, 2, · · · , n and Bj , j = 1, 2, · · · ,m
are mutually exclusive, then

n∑
i=1

m∑
j=1

P(Ai ,Bj) = 1
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Conditional Probability

The conditional probability P(A|B) is the probability of event A given that
event B has already been observed.

Conditional Probability

P(A|B) =
P(A,B)

P(B)

P(B|A) =
P(A,B)

P(A)

Bayes’ Theorem

P(A|B) =
P(B|A)P(A)

P(B)

P(B|A) =
P(A|B)P(B)

P(A)
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Statistical Independence

If observing B does not change the probability of observing A, i.e.,
P(A|B) = P(A), then A and B are statistically independent. In this case:

P(A,B) = P(A|B)P(B) = P(A)P(B)

Statistically Independent Events

Two events A and B are statistically independent if and only if

P(A,B) = P(A)P(B)
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The Theory of Probability: Random Experiments

Probability

Experiment

Outcome

Event

Probability - Axioms of Probability

Union - Intersection

Joint events and joint probabilities

Conditional probability

Statistical Independence

Let’s play

Where is the Prize?
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The Theory of Probability: Random Variables

Random Variables

Probability distributions

Probability densities

Joint probability distributions

Conditional probability distributions

Statistically independent random variables

Statistical averages

Transformation of Random Variables

Y = g(X )
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Random Variables: Cumulative Distribution Function

The CDF F (x) denotes the probability that a random variable (RV) X is
smaller than or equal to a specific value x , i.e.

F (x) = P(X ≤ x)

Properties of CDF

0 ≤ F (x) ≤ 1

lim
x→−∞

F (x) = 0

lim
x→∞

F (x) = 1

d

dx
F (x) ≥ 0
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Random Variables: Probability Density Function

The PDF of a RV X is defined as:

p(x) =
dF (x)

dx
, −∞ ≤ x ≤ ∞

Properties of PDF

p(x) ≥ 0

F (x) =

∫ x

−∞
p(u)du∫ ∞

−∞
p(u)du = 1
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Random Variables: Discrete RVs

Discrete Random Variables

For discrete random variables, where X ∈ {x1, x2, · · · , xn},

p(x) =
n∑

i=1

P(X = xi )δ(x − xi )

Note: The probability that x1 ≤ X ≤ x2 is given as

P(x1 ≤ X ≤ x2) =

∫ x2

x1

p(u)du = F (x2)− F (x1)
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Random Variables: Joint PDF and Joint CDF

Joint CDF and PDF

Given two RVs, X and Y ,

FXY (x , y) = P(X ≤ x ,Y ≤ y)

=

∫ x

−∞

∫ y

−∞
pXY (u, v)dudv

pXY (x , y) =
∂

∂x

∂

∂y
FXY (x , y)

Marginal Densities

pX (x) =

∫ ∞
−∞

pXY (x , y)dy

pY (y) =

∫ ∞
−∞

pXY (x , y)dx
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Random Variables: Joint PDF and Joint CDF

Properties of Joint CDF and PDF

FXY (−∞, y) = FXY (x ,−∞) = FXY (−∞,−∞) = 0

FXY (∞,∞) = 1

Conditional PDF and CDF

pX |Y (x |y) =
pXY (x , y)

pY (y)

FX |Y (x |y) =

∫ x

−∞
pX |Y (u|y)du

c© Samy S. Soliman (Cairo University) ELC 623 Postgraduate Program 22 / 53



Random Variables: Joint PDF and Joint CDF

Statistical Independence

X and Y are statistically independent iff

pXY (x , y) = pX (x)pY (y)

Complex Random Variables

For a complex RV Z = X + jY ,
CDF:

FZ (z) = P(X ≤ x ,Y ≤ y) = FXY (x , y)

PDF
pZ (z) = pXY (x , y)
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Functions of Random Variables

Problem Statement

Given a RV X with known PDF, pX (x), and CDF, FX (x), what are the
PDF and the CDF of another RV Y , where Y = g(X )

Transformation of RVs

pY (y) =
pX (f (y))

J(x)
, where J(x) =

dy

dx
|x=f (y)

Examples

1 Y = aX + b

2 Y = aX 2 + b

3 Y = X1 + X2
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Sum of Two Random Variables

Problem

Given two random variables X1 and X2, with joint probability
pX1,X2(x1, x2), what the PDF of Y = X1 + X2?

Solution

Since x1 = y − x2, then the PDF of Y and X2 is obtained as

pY ,X−2(y , x2) = pX1,X2(x1, x2)|x1=y−x2 = pX1,X2(y − x2, x2)

Then, using marginal densities, the PDF of Y can be obtained as

pY (y) =

∫ ∞
−∞

pX1,X2(y − x2, x2)dx2

=

∫ ∞
−∞

pX1,X2(x1, y − x1)dx1
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Sum of Two Random Variables

Special Case: Sum of Two SI RVs

If X1 and X2 are statistically independent, then

pX1,X2(x1, x2) = pX1(x1)pX2(x2)

Then,

pY (y) =

∫ ∞
−∞

pX1(y − x2)pX2(x2)dx2

= pX1(x1) ∗ pX2(x2)

The PDF of Y is the convolution of the PDFs of X1 and X2.
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Statistical Averages of RVs

General Case: Statistical Averaging

µ = E{g(X )} =

∫ ∞
−∞

g(X )pX (x)dx

Mean

E{X} =

∫ ∞
−∞

x pX (x)dx

nth Moment

E{X n} =

∫ ∞
−∞

xn pX (x)dx
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Statistical Averages of RVs

nth Central Moment

E{(X − µ)n} =

∫ ∞
−∞

(x − µ)n pX (x)dx

Variance = 2th Central Moment

σ2 = E{(X − µ)2} =

∫ ∞
−∞

(x − µ)2 pX (x)dx

= E{X 2} − (E{X})2

Characteristic Function

ψ(jt) = E{e jtx} =

∫ ∞
−∞

e jtx pX (x)dx
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Charachteristic Function

Characteristic Function: Properties

ψ(jt) = FpX (x)(−jt)

pX (x) =
1

2π

∫ ∞
−∞

ψ(jt)e−jtxdt

E{X n} = (−j)n dn

dtn
ψ(jt)|t=0
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Charachteristic Function

Sum of Two SI RVs: Y = X1 + X2

ψY (jt) = E{e jtY }
= E{e jt(X1+X2)}
= E{e jt(X1)e jt(X2)}
= E{e jt(X1)}E{e jt(X2)}
= ψX1(jt)ψX2(jt)
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The Theory of Probability: Random Variables

Random Variables

Probability distributions

Probability densities

Joint probability distributions

Conditional probability distributions

Statistically independent random variables

Statistical averages

Transformation of Random Variables

Y = g(X )
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The Theory of Probability: Distributions

Useful Probability Distributions

Uniform distribution

Gaussian (normal) distribution

Rayleigh distribution

Nakagami-m distribution

Rician distribution

Chi-square distribution

Bounding

Chernoff bound

Central Limit Theorem
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Gaussian Distribution

The Gaussian distribution is an important probability distribution in
practice because many physical phenomena can be described by a
Gaussian distribution, e.g. AWGN

One-Dimentional Gaussian RV

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

F (x) =
1

2
+

1

2
erf

(
x − µ√

2σ

)

Note: Useful definitions

erf (x) =
2√
π

∫ x

0
e−t

2
dt

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt
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Gaussian Distribution: Statistical Averages

One-Dimentional Gaussian RV

ψ(jt) = e jtµ−t
2σ2/2

µk = E{(x − µ)k} =

{
1.3.5. · · · .(k − 1)σk , even k

0, odd k

E{xk} =
k∑

i=0

(
k

i

)
µiµk−i

Sum of n SI Gaussian RVs

Y =
n∑

i=1

Xi

ψY (jt) = · · ·
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The Theory of Probability: Distributions

Useful Probability Distributions

Uniform distribution

Rayleigh distribution

Nakagami-m distribution

Rician distribution

Chi-square distribution

Refer to [Proakis, Section 2.3]
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Tail Probability and Chernoff Bound

Tail Probability

The tail probability (area under the tail of PDF) arises often to determine
the error probability of digital communication systems, and is given by

P (x ≥ δ) =

∫ ∞
δ

p(x)dx

=

∫ ∞
−∞

U(x − δ)p(x)dx = E{U(x − δ)}

Note that, for any α ≥ 0,

U(x − δ) ≤ eα(x−δ)
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Tail Probability and Chernoff Bound

Chernoff Bound

The tail probability (area under the tail of PDF) arises often to determine
the error probability of digital communication systems, and is given by

P (x ≥ δ) = E{U(x − δ)}
≤ E{eα(x−δ)}
= e−αδE{eαx}

In order to obtain the tightest Chernoff bound, α should be optimized
such that

d

dα
e−αδE{eαx} = 0
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Central Limit Theorem

Refer to [Proakis, Section 2.5]

c© Samy S. Soliman (Cairo University) ELC 623 Postgraduate Program 38 / 53



Stochastic Processes

Stochastic processes arise whenever a random phenomenon is a function of
time

Stochastic Processes

Stationary processes - Wide sense stationary processes

Statistical averages

Power Spectral Density

Ergodic processes

Cyclo-stationary processes

Refer to [Proakis, Section 2.7]
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Stochastic Processes

Random Process - Sample Function - Ensemble
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Strict Sense Stationary Stochastic Process

RP → RV

Considering specific time instants t1 > t2 > ... > tn with the arbitrary
positive integer index n, the random variables Xti = X (ti ), i = 1, 2, ..., n,
are fully characterized by their joint PDF p(xt1 , xt2 , ..., xtn)

Definition

If Xti and Xti+τ have the same statistical properties, X (t) is stationary in
the strict sense.

p(xt1 , xt2 , ..., xtn) = p(xt1+τ , xt2+τ , ..., xtn+τ )
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Statistical Averages - Ensemble Averages

First-Order Moment = Mean

m(ti ) = E{Xti} =

∫ ∞
−∞

xtip(xti )dxti

For SSS RP, m(ti ) = m

Second-Order Moment = Autocorrelation Function

φ(t1, t2) = E{Xt1Xt2} =

∫ ∞
−∞

∫ ∞
−∞

xt1xt2p(xt1 , xt2)dxt1dxt2

For SSS RP, φ(t1, t2) = φ(t1 − t2) = φ(τ) ⇒ Average Power = φ(0)

Central Second-Order Moment = Covariance Function

µ(t1, t2) = E{(Xt1 −m(t1))(Xt2 −m(t2))} = φ(t1, t2)−m(t1)m(t2)

For SSS RP, µ(t1, t2) = µ(τ) = φ(τ)−m2 ⇒ Variance = µ(0)
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Wide Sense Stationary Random Process

Definition

If the first and second order moments of a stochastic process are invariant
to any time shift τ , the process is referred to as wide sense stationary
process.
Wide sense stationary processes are not necessarily strict sense stationary.
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Ergodic Random Process

Definition

A process X (t) is ergodic if its statistical averages can be calculated as
timeaverages of sample functions.
Only wide sense stationary processes can be ergodic.

m = lim
T→∞

1

2T

∫ T

−T
x(t)dt

φ(τ) = lim
T→∞

1

2T

∫ T

−T
x(t)x(t + τ)dt

where x(t) is any of the sample functions.
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Jointly Stochastic Processes

Joint Stationarity

X (t) and Y (t) are jointly stationary if their joint PDF is invariant to time
shifts, τ .

Cross Correlation Function

φXY (t1, t2) = E{Xt1Yt2} =

∫ ∞
−∞

∫ ∞
−∞

xt1yt2p(xt1 , yt2)dxt1dyt2

If X (t) and Y (t) are jointly and individually SSS, φXY (t1, t2) = φXY (τ)

Cross Covariance Function

µXY (t1, t2) = E{(Xt1 −mX (t1))(Yt2 −mY (t2))}
= φXY (t1, t2)−mX (t1)mY (t2)

If X (t) and Y (t) are jointly and individually SSS, µXY (t1, t2) = µXY (τ)
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Jointly Stochastic Processes

Statistical Independence

X (t) and Y (t) are SI iff for every n and m

p(xt1 , xt2 , ..., xtn , yt1 , yt2 , ..., ytm) = p(xt1 , xt2 , ..., xtn)p(yt1 , yt2 , ..., ytm)

Uncorrelation

X (t) and Y (t) are uncorrelated iff

µXY (t1, t2) = 0
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Power Spectral Density

Definition

Power spectral density is defined for stationary RP as the Fourier
Transform of the ACF

Φ(f ) = F{φ(τ)} =

∫ ∞
−∞

φ(τ)e−j2πf τdτ

φ(τ) = F−1{Φ(f )} =

∫ ∞
−∞

Φ(f )e j2πf τdf

Uncorrelated Stationary Process

φ(τ) = δ(τ)

Φ(f ) = 1
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Power Spectral Density

Average Power of a Stationary RP

φ(0) = E{|Xt |2} =

∫ ∞
−∞

Φ(f )df

Symmetry of PSD

Show that: Φ∗(f ) = Φ(f )

Cross Correlation Spectrum

ΦXY (f ) = F{φXY (τ)} =

∫ ∞
−∞

φXY (τ)e−j2πf τdτ

Show that:

Φ∗XY (f ) = ΦYX (f )

ΦYX (f ) = ΦXY (−f ), For real X(t) and Y(t)
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Response of LTI Systems

y(t) =

∫ ∞
−∞

h(τ)x(t−τ)dτ

H(f ) = F{h(t)}

φhh(τ) =

∫ ∞
−∞

h(τ)h(t + τ)dτ

Φhh(f ) =

Mean, ACF and PSD of Y (t)

mY = mXH(0)

φYY (τ) = E{Yt1Y
∗
t1−τ}

= φhh(τ) ∗ φXX (τ)

ΦYY (f ) = |H(f )|2ΦXX (f )

ΦYX (f ) = H(f )ΦXX (f )

Show that: Power spectral densities are Non-negative
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Cyclostationary Stochastic Processes

Definition

Cyclo-stationary processes are non-stationary processes whose statistical
averages are periodic.

Assume a digital communication signal expressed as

X (t) =
∞∑

n=−∞
a[n]g(t − nT )

Mean of X (t): Show that the mean is periodic

mX (t) =
∑
n

E{a[n]}g(t − nT ) = ma

∑
n

g(t − nT )

ACF of X (t): Show that the ACF is periodic

φXX (t + τ, t) = E{X (t + τ)X ∗(t)} = · · ·
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Bandpass and Lowpass Random Processes

Bandpass and Lowpass Random Processes

Refer to [Proakis, Section 2.9]

c© Samy S. Soliman (Cairo University) ELC 623 Postgraduate Program 51 / 53



References

J. Proakis
Digital Communications, 5th Edition.
McGraw Hill.

c© Samy S. Soliman (Cairo University) ELC 623 Postgraduate Program 52 / 53



Thank You
Questions?

samy.soliman@cu.edu.eg

http://scholar.cu.edu.eg/samysoliman
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