Digital Communications (ELC 623)

© Samy S. Soliman

Electronics and Electrical Communications Engineering Department Cairo University, Egypt

> Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

> > Postgraduate Program

Introduction Statistical Decision Theory

Introduction to Communication Systems

- 2 Review on Probability Theory
- 3 Review on Stochastic Processes

Transmitter

Information Source

Analog - Digital

Source Encoder

Represent the source signal as efficiently as possible (minimize the redundancy)

Ohannel Encoder

Increase reliability of received data (add redundancy in a controlled manner to information bits)

Oigital Modulator

Transmit most efficiently over the (physical) transmission channel (map the input bit sequence to a signal waveform which is suitable for the transmission channel)

Receiver

Digital Demodulator

Reconstruct transmitted data symbols (binary or M-ary from channelcorrupted received signal

Ochannel Decoder

Exploit redundancy introduced by channel encoder to increase reliability of information bits

Source Decoder

Reconstruct original information signal from output of channel decoder

Note: In advanced receivers, demodulation and decoding are sometimes performed iteratively to enhance the receiver's performance.

Channel

1 Examples of Physical Channel

- Wireline Optical Fiber
- Wireless radio frequency (RF) channel Optical Wireless Channel
- Underwater Acoustic Channel Storage Channel (CD, disc, etc.)

Ochannel Impairments

- Noise (electronic, thermal, ...)
- Nonlinearities, distortions, time-variance, ...
- Interference

For the design of the transmitter and the receiver we need a simple mathematical model of the physical communication channel that captures its most important properties. This model will vary from one application to another.

Channel Types: AWGN

Additive White Gaussian Noise Channel - With Unknown Phase

$$r(t) = \alpha e^{j\phi} s(t) + n(t)$$

The transmitted signal experiences an unknown phase shift ϕ , which is often modeled as a random variable, uniformly distributed in the interval $[-\pi, \pi)$. The transmitted signal is also attenuated by a factor of α , and impaired by AWGN.

© Samy S. Soliman (Cairo University)

7 / 53

Linearly Dispersive Channel (Linear Filter Channel)

$$r(t) = c(t) * s(t) + n(t)$$

The transmitted signal is linearly distorted by c(t) and impaired by AWGN.

Types of Channels

- Multiuser channels
- MIMO channels
- Relaying channels
- Fading channels
- • •

Discussion:

What tools do we need for the analysis/design of communication systems?

The Theory of Probability: Random Experiments

An essential tool in the design of digital communication systems.

obability	l
Experiment	
• Outcome	
Event	
 Probability - Axioms of Probability 	
Union - Intersection	
 Joint events and joint probabilities 	
Conditional probability	
Statistical Independence	

Axioms of Probability

Assume events A and B are subsets of the sample space S, i.e. $A \subset S$ and $B \subset S$

- **1** P(S) = 1
- 0 < P(A) < 1

• If $A \cap B = \phi$, then $P(A \cup B) = P(A) + P(B)$

Note: If $A \cap B \neq \phi$, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Joint Events and Joint Probability

Consider two experiments with outcomes A_i , $i = 1, 2, \dots, n$ and B_j , $j = 1, 2, \dots, m$ If both experiments are carried out, then the outcome (A_i, B_j) is assigned the probability $P(A_i, B_j)$ with $0 \le P(A_i, B_j) \le 1$

• If the outcome of $B_j, j = 1, 2, \cdots, m$ are mutually exclusive, then

$$\sum_{j=1}^m P(A_i, B_j) = P(A_i)$$

If all the outcome of both A_i, i = 1, 2, · · · , n and B_j, j = 1, 2, · · · , m are mutually exclusive, then

$$\sum_{i=1}^n \sum_{j=1}^m P(A_i, B_j) = 1$$

Conditional Probability

The conditional probability P(A|B) is the probability of event A given that event B has already been observed.

Conditional Probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
$$P(B|A) = \frac{P(A,B)}{P(A)}$$

Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

© Samy S. Soliman (Cairo University)

If observing B does not change the probability of observing A, i.e., P(A|B) = P(A), then A and B are statistically independent. In this case:

$$P(A,B) = P(A|B)P(B) = P(A)P(B)$$

Statistically Independent Events

Two events A and B are statistically independent if and only if

P(A,B) = P(A)P(B)

The Theory of Probability: Random Experiments

Probability

- Experiment
- Outcome
- Event
- Probability Axioms of Probability
- Union Intersection
- Joint events and joint probabilities
- Conditional probability
- Statistical Independence

Let's play

Where is the Prize?

Random Variables

- Probability distributions
- Probability densities
- Joint probability distributions
- Conditional probability distributions
- Statistically independent random variables
- Statistical averages

Transformation of Random Variables

$$Y = g(X)$$

Random Variables: Cumulative Distribution Function

The CDF F(x) denotes the probability that a random variable (RV) X is smaller than or equal to a specific value x, i.e.

$$F(x) = P(X \leq x)$$

Properties of CDF

$$0 \le F(x) \le 1$$
$$\lim_{x \to -\infty} F(x) = 0$$
$$\lim_{x \to \infty} F(x) = 1$$
$$\frac{d}{dx} F(x) \ge 0$$

Random Variables: Probability Density Function

The PDF of a RV X is defined as:

$$p(x) = \frac{dF(x)}{dx}, \qquad -\infty \le x \le \infty$$

Properties of PDF

$$p(x) \geq 0$$

$$F(x) = \int_{-\infty}^{x} p(u) du$$

$$\int_{-\infty}^{\infty} p(u) du = 1$$

Discrete Random Variables

For discrete random variables, where $X \in \{x_1, x_2, \cdots, x_n\}$,

$$p(x) = \sum_{i=1}^{n} P(X = x_i)\delta(x - x_i)$$

Note: The probability that $x_1 \leq X \leq x_2$ is given as

$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} p(u) du = F(x_2) - F(x_1)$$

Random Variables: Joint PDF and Joint CDF

Joint CDF and PDF

Given two RVs, X and Y,

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

= $\int_{-\infty}^{x} \int_{-\infty}^{y} p_{XY}(u,v) du dv$
 $p_{XY}(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F_{XY}(x,y)$

Marginal Densities

$$p_X(x) = \int_{-\infty}^{\infty} p_{XY}(x, y) dy$$
$$p_Y(y) = \int_{-\infty}^{\infty} p_{XY}(x, y) dx$$

Properties of Joint CDF and PDF

$$F_{XY}(-\infty, y) = F_{XY}(x, -\infty) = F_{XY}(-\infty, -\infty) = 0$$
$$F_{XY}(\infty, \infty) = 1$$

Conditional PDF and CDF

$$p_{X|Y}(x|y) = \frac{p_{XY}(x,y)}{p_Y(y)}$$
$$F_{X|Y}(x|y) = \int_{-\infty}^{x} p_{X|Y}(u|y) du$$

Statistical Independence

X and Y are statistically independent iff

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$

Complex Random Variables

For a complex RV Z = X + jY, CDF:

$$F_Z(z) = P(X \le x, Y \le y) = F_{XY}(x, y)$$

PDF

$$p_Z(z)=p_{XY}(x,y)$$

Problem Statement

Given a RV X with known PDF, $p_X(x)$, and CDF, $F_X(x)$, what are the PDF and the CDF of another RV Y, where Y = g(X)

Transformation of RVs

$$p_Y(y) = \frac{p_X(f(y))}{J(x)},$$
 where $J(x) = \frac{dy}{dx}|_{x=f(y)}$

Examples

$$Y = aX + b$$

$$Y = aX^2 + b$$

$$Y = X_1 + X_2$$

Problem

Given two random variables X_1 and X_2 , with joint probability $p_{X_1,X_2}(x_1,x_2)$, what the PDF of $Y = X_1 + X_2$?

Solution

Since $x_1 = y - x_2$, then the PDF of Y and X_2 is obtained as

$$p_{Y,X-2}(y,x_2) = p_{X_1,X_2}(x_1,x_2)|_{x_1=y-x_2} = p_{X_1,X_2}(y-x_2,x_2)$$

Then, using marginal densities, the PDF of Y can be obtained as

$$p_{Y}(y) = \int_{-\infty}^{\infty} p_{X_{1},X_{2}}(y-x_{2},x_{2})dx_{2}$$

=
$$\int_{-\infty}^{\infty} p_{X_{1},X_{2}}(x_{1},y-x_{1})dx_{1}$$

25 / 53

Special Case: Sum of Two SI RVs

If X_1 and X_2 are statistically independent, then

$$p_{X_1,X_2}(x_1,x_2) = p_{X_1}(x_1)p_{X_2}(x_2)$$

Then,

$$p_Y(y) = \int_{-\infty}^{\infty} p_{X_1}(y - x_2) p_{X_2}(x_2) dx_2$$

= $p_{X_1}(x_1) * p_{X_2}(x_2)$

The PDF of Y is the **convolution** of the PDFs of X_1 and X_2 .

General Case: Statistical Averaging

$$\mu = \mathcal{E}\{g(X)\} = \int_{-\infty}^{\infty} g(X) p_X(x) dx$$

Mean

$$\mathcal{E}\{X\} = \int_{-\infty}^{\infty} x \, p_X(x) dx$$

nth Moment

$$\mathcal{E}\{X^n\} = \int_{-\infty}^{\infty} x^n \, p_X(x) dx$$

э

• • • • • • • • • • • •

Statistical Averages of RVs

nth Central Moment

$$\mathcal{E}\{(X-\mu)^n\} = \int_{-\infty}^{\infty} (x-\mu)^n p_X(x) dx$$

Variance = 2th Central Moment

$$\sigma^{2} = \mathcal{E}\{(X - \mu)^{2}\} = \int_{-\infty}^{\infty} (x - \mu)^{2} p_{X}(x) dx$$
$$= \mathcal{E}\{X^{2}\} - (\mathcal{E}\{X\})^{2}$$

Characteristic Function

$$\psi(jt) = \mathcal{E}\{e^{jtx}\} = \int_{-\infty}^{\infty} e^{jtx} p_X(x) dx$$

© Samy S. Soliman (Cairo University)

Image: A matrix

э

Characteristic Function: Properties

$$\psi(jt) = \mathcal{F}_{p_X(x)}(-jt)$$

$$p_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(jt) e^{-jtx} dt$$

$$\mathcal{E}\{X^n\} = (-j)^n \frac{d^n}{dt^n} \psi(jt)|_{t=0}$$

э

<u>Sum of Two SI RVs:</u> $Y = X_1 + X_2$

ψ

$$\begin{array}{rcl} \gamma(jt) &=& \mathcal{E}\{e^{jtY}\}\\ &=& \mathcal{E}\{e^{jt(X_1+X_2)}\}\\ &=& \mathcal{E}\{e^{jt(X_1)}e^{jt(X_2)}\}\\ &=& \mathcal{E}\{e^{jt(X_1)}\}\mathcal{E}\{e^{jt(X_2)}\}\\ &=& \psi_{X_1}(jt)\psi_{X_2}(jt) \end{array}$$

© Samy S. Soliman (Cairo University)

Image: Image:

э

Random Variables

- Probability distributions
- Probability densities
- Joint probability distributions
- Conditional probability distributions
- Statistically independent random variables
- Statistical averages

Transformation of Random Variables

$$Y = g(X)$$

The Theory of Probability: Distributions

Useful Probability Distributions

Uniform distribution

• Gaussian (normal) distribution

- Rayleigh distribution
- Nakagami-*m* distribution
- Rician distribution
- Chi-square distribution

Bounding

- Chernoff bound
- Central Limit Theorem

Gaussian Distribution

The Gaussian distribution is an important probability distribution in practice because many physical phenomena can be described by a Gaussian distribution, e.g. AWGN

One-Dimentional Gaussian RV

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x-\mu}{\sqrt{2\sigma}}\right)$$

Note: Useful definitions

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-\frac{t^2}{2}} dt$$

Gaussian Distribution: Statistical Averages

One-Dimentional Gaussian RV

$$\psi(jt) = e^{jt\mu - t^2\sigma^2/2}$$

$$\mu_k = \mathcal{E}\{(x-\mu)^k\} = \begin{cases} 1.3.5.\cdots.(k-1)\sigma^k, & \text{even } k\\ 0, & \text{odd } k \end{cases}$$

$$\mathcal{E}\{x^k\} = \sum_{i=0}^k \binom{k}{i} \mu^i \mu_{k-i}$$

Sum of n SI Gaussian RVs

$$Y = \sum_{i=1}^{n} X_i$$

$$Y(jt) = \cdots$$

© Samy S. Soliman (Cairo University)

ELC 623

ψv

Useful Probability Distributions

- Uniform distribution
- Rayleigh distribution
- Nakagami-*m* distribution
- Rician distribution
- Chi-square distribution

Refer to [Proakis, Section 2.3]

Tail Probability

The tail probability (area under the tail of PDF) arises often to determine the error probability of digital communication systems, and is given by

$$P(x \ge \delta) = \int_{\delta}^{\infty} p(x) dx$$

=
$$\int_{-\infty}^{\infty} U(x - \delta) p(x) dx = \mathcal{E}\{U(x - \delta)\}$$

Note that, for any $\alpha \geq$ 0,

$$U(x-\delta) \leq e^{lpha(x-\delta)}$$

Chernoff Bound

The tail probability (area under the tail of PDF) arises often to determine the error probability of digital communication systems, and is given by

$$P(x \ge \delta) = \mathcal{E}\{U(x - \delta)\}$$

$$\leq \mathcal{E}\{e^{\alpha(x-\delta)}\}$$

$$= e^{-\alpha\delta}\mathcal{E}\{e^{\alpha x}\}$$

In order to obtain the tightest Chernoff bound, α should be optimized such that

$$\frac{d}{d\alpha}e^{-\alpha\delta}\mathcal{E}\{e^{\alpha x}\}=0$$

Refer to [Proakis, Section 2.5]

Stochastic processes arise whenever a random phenomenon is a function of time

Stochastic Processes

- Stationary processes Wide sense stationary processes
- Statistical averages
- Power Spectral Density
- Ergodic processes
- Cyclo-stationary processes

Refer to [Proakis, Section 2.7]

Stochastic Processes

Random Process - Sample Function - Ensemble

$\mathsf{RP} \to \mathsf{RV}$

Considering specific time instants $t_1 > t_2 > ... > t_n$ with the arbitrary positive integer index n, the random variables $X_{t_i} = X(t_i), i = 1, 2, ..., n$, are fully characterized by their joint PDF $p(x_{t_1}, x_{t_2}, ..., x_{t_n})$

Definition

If X_{t_i} and $X_{t_i+\tau}$ have the same statistical properties, X(t) is stationary in the strict sense.

$$p(x_{t_1}, x_{t_2}, ..., x_{t_n}) = p(x_{t_1+\tau}, x_{t_2+\tau}, ..., x_{t_n+\tau})$$

Statistical Averages - Ensemble Averages

First-Order Moment = Mean

$$m(t_i) = \mathcal{E}\{X_{t_i}\} = \int_{-\infty}^{\infty} x_{t_i} p(x_{t_i}) dx_{t_i}$$

For SSS RP, $m(t_i) = m$

Second-Order Moment = Autocorrelation Function

$$\phi(t_1, t_2) = \mathcal{E}\{X_{t_1}X_{t_2}\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{t_1}x_{t_2}p(x_{t_1}, x_{t_2})dx_{t_1}dx_{t_2}$$

For SSS RP, $\phi(t_1, t_2) = \phi(t_1 - t_2) = \phi(\tau) \Rightarrow$ Average Power = $\phi(0)$

Central Second-Order Moment = Covariance Function

$$\mu(t_1, t_2) = \mathcal{E}\{(X_{t_1} - m(t_1))(X_{t_2} - m(t_2))\} = \phi(t_1, t_2) - m(t_1)m(t_2)$$

For SSS RP,
$$\mu(t_1, t_2) = \mu(\tau) = \phi(\tau) - m^2 \Rightarrow$$
 Variance = $\mu(0)$

© Samy S. Soliman (Cairo University)

Definition

If the first and second order moments of a stochastic process are invariant to any time shift τ , the process is referred to as wide sense stationary process.

Wide sense stationary processes are not necessarily strict sense stationary.

Definition

A process X(t) is ergodic if its statistical averages can be calculated as timeaverages of sample functions.

Only wide sense stationary processes can be ergodic.

$$m = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$

$$\phi(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t+\tau) dt$$

where x(t) is any of the sample functions.

Jointly Stochastic Processes

Joint Stationarity

X(t) and Y(t) are jointly stationary if their joint PDF is invariant to time shifts, τ .

Cross Correlation Function

$$\phi_{XY}(t_1, t_2) = \mathcal{E}\{X_{t_1}Y_{t_2}\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{t_1}y_{t_2}p(x_{t_1}, y_{t_2})dx_{t_1}dy_{t_2}$$

If X(t) and Y(t) are jointly and individually SSS, $\phi_{XY}(t_1, t_2) = \phi_{XY}(\tau)$

Cross Covariance Function

$$\mu_{XY}(t_1, t_2) = \mathcal{E}\{(X_{t_1} - m_X(t_1))(Y_{t_2} - m_Y(t_2))\} \\ = \phi_{XY}(t_1, t_2) - m_X(t_1)m_Y(t_2)$$

If X(t) and Y(t) are jointly and individually SSS, $\mu_{XY}(t_1, t_2) = \mu_{XY}(\tau)$

Statistical Independence

X(t) and Y(t) are SI iff for every *n* and *m*

$$p(x_{t_1}, x_{t_2}, ..., x_{t_n}, y_{t_1}, y_{t_2}, ..., y_{t_m}) = p(x_{t_1}, x_{t_2}, ..., x_{t_n})p(y_{t_1}, y_{t_2}, ..., y_{t_m})$$

Uncorrelation

X(t) and Y(t) are uncorrelated iff

 $\mu_{XY}(t_1,t_2)=0$

Definition

Power spectral density is defined for stationary RP as the Fourier Transform of the ACF

$$\Phi(f) = \mathcal{F}\{\phi(\tau)\} = \int_{-\infty}^{\infty} \phi(\tau) e^{-j2\pi f\tau} d\tau$$
$$\phi(\tau) = \mathcal{F}^{-1}\{\Phi(f)\} = \int_{-\infty}^{\infty} \Phi(f) e^{j2\pi f\tau} df$$

Uncorrelated Stationary Process

$$\phi(au) = \delta(au)$$

 $\Phi(f) = 1$

Power Spectral Density

Average Power of a Stationary RP

$$\phi(0) = \mathcal{E}\{|X_t|^2\} = \int_{-\infty}^{\infty} \Phi(f) df$$

Symmetry of PSD

Show that:
$$\Phi^*(f) = \Phi(f)$$

Cross Correlation Spectrum

$$\Phi_{XY}(f) = \mathcal{F}\{\phi_{XY}(au)\} = \int_{-\infty}^{\infty} \phi_{XY}(au) e^{-j2\pi f au} d au$$

Show that:

$$\Phi_{XY}^*(f) = \Phi_{YX}(f)$$

$$\Phi_{YX}(f) = \Phi_{XY}(-f), \quad \text{For real } X(t) \text{ and } Y(t)$$

Mean, ACF and PSD of Y(t)

$$m_{Y} = m_{X}H(0)$$

$$\phi_{YY}(\tau) = \mathcal{E}\{Y_{t_{1}}Y_{t_{1}-\tau}^{*}\}$$

$$= \phi_{hh}(\tau) * \phi_{XX}(\tau)$$

$$\Phi_{YY}(f) = |H(f)|^{2}\Phi_{XX}(f)$$

$$\Phi_{YX}(f) = H(f)\Phi_{XX}(f)$$

Show that: Power spectral densities are Non-negative

© Samy S. Soliman (Cairo University)

Postgraduate Program 49 / 53

Cyclostationary Stochastic Processes

Definition

Cyclo-stationary processes are non-stationary processes whose statistical averages are periodic.

Assume a digital communication signal expressed as

$$X(t) = \sum_{n=-\infty}^{\infty} a[n]g(t - nT)$$

Mean of X(t): Show that the mean is periodic

$$m_X(t) = \sum_n \mathcal{E}\{a[n]\}g(t - nT) = m_a \sum_n g(t - nT)$$

ACF of X(t): Show that the ACF is periodic

$$\phi_{XX}(t+\tau,t) = \mathcal{E}\{X(t+\tau)X^*(t)\} = \cdots$$

Bandpass and Lowpass Random Processes

Refer to [Proakis, Section 2.9]

J. Proakis Digital Communications, 5th Edition. *McGraw Hill.*

Thank You

Questions?

samy.soliman@cu.edu.eg

http://scholar.cu.edu.eg/samysoliman