

Question 1 (Fourier Series)

Determine the Fourier series coefficients for each of the periodic discrete-time signals given below. Plot the magnitude and phase of each set of coefficients a_k

- 1) x[n] is periodic with period 6 and $x[n] = (1/2)^n$; for -2 < n < 3
- 2) $x[n] = \sin(2\pi n/3)\cos(\pi n/2)$

Question 2 (Fourier Series)

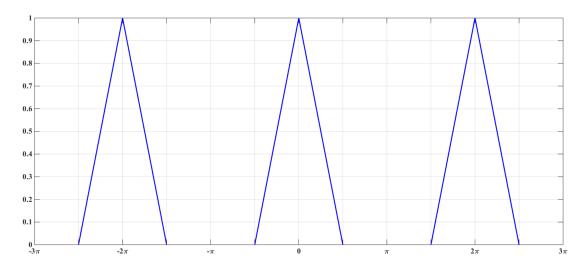
Given the Fourier series coefficients of a signal that is periodic with period N = 8, determine the signal x[n]

$$a_k = \cos(k\pi/4) + \sin(3k\pi/4)$$

Question 3 (Fourier Transform)

Compute the Fourier transform of each of the following signals:

1) $x[n] = \delta[4 - 2n]$ 2) $x[n] = a^n \sin(\Omega_0 n) u[n]$, where |a| < 1


Question 4 (Fourier Transform)

The following is Fourier transform of discrete-time signal. Determine the signal corresponding to that transform:

$$X(\Omega) = \cos^2(\Omega)$$

Question 5 (Properties)

Let x[n] be a discrete-time sequence with Fourier transform $X(\Omega)$, as shown in the figure below. Sketch the Fourier transform of $y[n] = x[n] \cos(\pi n)$

Question 6 (Properties)

Consider a discrete-time signal h[n], with Fourier transform

$$H(\Omega) = \begin{cases} 1 & \pi - \Omega_c \le |\Omega| \le \pi \\ 0 & |\Omega| < \pi - \Omega_c \end{cases}$$

- 1) Determine a function g[n] such that $h[n] = \frac{\sin[\Omega_c n]}{\pi n} g[n]$
- 2) As Ω_c is increased, does h[n] get more concentrated or less concentrated about the origin?

Question 7 (Fourier Series)

A discrete-time periodic signal x[n] is real-valued and has a fundamental period N = 5. The non-zero Fourier Series coefficients for x[n] are

$$a_0 = 1, a_2 = a_2^* = e^{j\pi/4}, a_4 = a_{-4}^* = 2e^{j\pi/3}$$

Express x[n] in the form

$$x[n] = A_0 + \sum_{k=1}^{\infty} A_k \sin(\Omega_k n + \phi_k)$$

Question 8 (Properties)

Let x[n] be a real and odd periodic signal with period N = 7 and Fourier series coefficients a_k . Given that

$$a_{15} = j, a_{16} = 2j, a_{17} = 3j$$

Determine the values of a_0, a_{-1}, a_{-2} and a_{-3}

Question 9 (Properties)

For two periodic sequences x[n] and y[n], with period N = 4 and Fourier series coefficients a_k and b_k such that

$$a_0 = a_3 = 0.5a_1 = 0.5a_2 = 1$$
 and $b_0 = b_1 = b_2 = b_3 = 1$

Determine the Fourier series coefficients of z[n] = x[n]y[n]

Question 10 (Properties)

Given the following facts about a particular signal x[n] with Fourier transform $X(\Omega)$, find x[n]

1)
$$x[n] = 0$$
 for $n > 0$
2) $x[0] > 0$
3) $\Im\{X(\Omega)\} = \sin(\Omega) - \sin(2\Omega)$
4) $\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|^2 d\Omega = 3$