The development of a new dissolved gas analysis (DGA) method often requires a comparative study to assess the accuracy of the proposed technique. This is faced with the following challenges: (i) the time and effort required to implement and validate the implementation of existing DGA methods, adds to the comparative study cost; (ii) the output states of different DGA methods are not similar, which makes it difficult to put methods side by side in a comparative study; and (iii) the availability of test data is limited. In this study, a user-friendly graphical user interface software package, DGALab, is developed to overcome these challenges. DGALab implements a unified DGA diagnosis framework to map the output states of DGA methods to uniform specifications. DGALab includes a library implementing most common DGA techniques, and includes a repository for input datasets available in the literature and collected directly from laboratories. DGALab simplifies the addition of new DGA techniques written in virtually any programming language. As a result, the process of developing a new DGA technique is greatly simplified using DGALab. To evaluate the software package results, the datasets and methods implemented therein were used to regenerate the results published in earlier research papers.
n/a