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Abstract—The emergence of the Internet of Things (IoT) is 

introducing more and more services and applications such as 

smart cities. For some services, the availability of elements and 

the connectivity between them are necessary. The robust 

functioning of a fragile and often dynamic system in IoT needs 

strong monitoring which is investigated in this paper. IPv6 

Routing Protocol for Low Power and Lossy Networks (RPL) is 

the standardized routing protocol over IP-connected IoT 

networks. In tandem with RPL, we propose a new solution which 

aims to achieve distributed monitoring with minimal 

computational complexity. The main objective is to increase 

robustness in IoT via monitoring the links in the Destination 

Oriented Directed Acyclic Graphs (DODAG) constructed by 

RPL.  Although RPL has a reactive repairing mechanism to 

tackle robustness in connectivity in case of node failures, we 

found that for real-time critical applications it is important to use 

proactive approaches for preventing faults and making recovery 

for connectivity faster. The problem can be modeled as a Vertex 

Cover Problem (VCP) on the DODAG. Such problem is a well 

known NP-hard optimization problem. The monitoring should be 

simple and energy aware. We demonstrate that the monitor 

placement in our case is only Fixed-Parameter Tractable, and 

also polynomial-time solvable, which is the best case. 

Keywords—IoT; RPL; link monitoring; Vertex Cover. 

 

I. INTRODUCTION 

The 6LowPAN based Internet of Things (IoT) networks 
tend to experience unexpected communication problems 
during deployment, because resource-constrained embedded 
devices are unreliable by nature for a variety of reasons, such 
as uncertain radio connectivity and battery drain [1]. To that 
end, monitoring techniques for detecting, localizing and 
remedying network failures in IoT will definitely develop in 
significance. The primary objective of network monitoring in 
general is mapping the symptoms of the detected problems to 
possible root causes to take corrective measures [2].  

Low power and Lossy Networks (LLN) experience several 
communication challenges such as energy and computational 
limitations of devices and extensive protocol overheads 
against memory. To handle such challenges, the Internet 
Engineering Task Force (IETF) has standardized the Routing 
Protocol for Low Power and Lossy Networks (RPL) as 
the routing protocol for IP-connected IoT [3] [4].  RPL is a 

self-healing routing and topology control protocol as it is able 
to respond to some node or link failures.  It uses reactive local 
and global repair approaches for network recovery. However, 
the recovery time, which is the time required to establish a 
new route could be critical. If for any reason, the links 
connecting the node with its neighbors are all broken, as in the 
case of a sudden failure of multiple links, the node will not be 
able to regain connectivity quickly. 

 RPL favors the use of reactive repair approaches as they 
are more energy-efficient; to minimize the cost of monitoring 
links that are not being used [4]. Furthermore, the neighbor 
unreachability detection (NUD) is not mandatory in RPL and 
active mechanisms for probing neighbors regularly do not 
exist in ContikiRPL implementation [5] [6]. 

Although a significant number of IoT applications are not 
time-sensitive, there is a whole class of real-time, mission-
critical applications; where data must be processed and shared 
instantly and within strict reliability constraints. For instance, 
critical control and fault detection applications; where 
corrective actions must be taken with little delay. 

For critical, real-time IoT applications, instead of the 
embedded RPL reactive repair approaches, proactive 
monitoring mechanisms should be used for early detection and 
prevention of network failures. Node and link failures could 
then be detected beforehand, as a kind of preventive 
maintenance. This could greatly improve the robustness in 
connectivity, reliability and eventually Quality of Service 
(QoS) in the network, which will significantly increase the 
uptake of the technology by stakeholders. The added cost for 
link monitoring could be tolerated for critical-time IoT 
applications as it will help accelerate recovery, and decrease 
node unreachability times. 

Consequently, we were motivated to investigate the 
problem of proactive link monitoring for IoT. The main 
objective is to increase robustness in IoT via monitoring the 
links in the Destination Oriented Directed Acyclic Graphs 
(DODAG) constructed by RPL. Distributed monitoring can be 
achieved by placing multiple monitoring nodes on the 
network. Those nodes are responsible for anticipating 
node/link failures by continuously tracking the status of the 
links in the DODAG and taking the corrective actions before 
failure happens.  In this paper, we focus on calculating the 
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minimum number of monitoring nodes required to track the 
entire set of links. We modeled the problem as a Vertex Cover 
Problem (VCP) on the DODAG. VCP is NP-hard, which 
implies that unless P = NP, efficient algorithms for solving it 
don't exist [13]. However, due to the battery and 
computational constraints of embedded devices, the 
monitoring should be simple and energy-aware. We propose 
an algorithm to convert a DODAG into a nice-tree 
decomposition which makes solving the generally NP-hard 
VCP on this special graph achieved in polynomial-time.  

The rest of the paper is organized as follows: section 2 is a 
brief overview of the RPL topology construction, repair 
mechanisms and a background of the concepts of vertex cover 
and tree decomposition problems. Section 3 presents the 
monitoring requirements, the proposed algorithm and proof of 
termination, followed by an analysis of the algorithm in 
Section 4. The conclusions and future research are presented 
in Section 5. 

  
 

Fig. 1. A sample RPL DODAG that has N nodes. The root is shaded, 
the numbers adjacent to the circles are the ranks, and 
the routes through siblings are dahsed. 

(0) 

(9) (10) (7) 

(3) (5) (5) 

(1) (1) (1) 

1 

2 3 4 

5 6 7 

8 9 10 

 

II. BACKGROUND 

A. RPL DODAG  

RPL is a versatile protocol that supports different modes of 
operation:  many-to-one communication from the constrained 
nodes towards the root (typically the 6LoWPAN border router 
6BR), one-to-many communication from the root to the 
constrained nodes (constrained in terms of battery and 
memory, etc.) and, one-to-one communication between the 
constrained nodes. The basic component of RPL is a 
Destination Oriented Directed Acyclic Graph (DODAG), a 
sample is shown in Fig. 1. It is a hierarchical organization, 
where each node has a node ID, one or more parents (except 
for the DODAG root), and a list of neighbors [7].  

Nodes also have a rank that determines their individual 
position in the hierarchy with respect to the DODAG root and 
relative to other nodes, which are the numbers adjacent to the 
nodes in Fig.1. In RPL, the rank as well as the parent selection 
is calculated via an Objective Function (OF) that might use 
factors such as link quality, node energy and link reliability in 
its calculation [5].  

The DODAG construction depends on the Neighbor 
Discovery Protocol (NDP) and Upward route discovery 
protocol in 6LoWPAN. They allow a node to join a DODAG 
by discovering neighbors that are members of the DODAG 
and identifying a set of parents [4]. The protocols build three 
logical sets of link-local nodes. Starting by the candidate 
neighbor set, which is a subset of the nodes that can be 
reached through link-local multicast. Then, the parent set, 
which is a restricted subset of the candidate neighbor set. 
Finally, the preferred parent set, a member (or members) of 
the parent set which is the preferred next hop in Upward 
routes. The exact policies for selecting neighbors is 
implementation dependent and driven by the OF. 

B. DODAG Repair Mechanisms 

Repair mechansims are of foremost significance for a 
 routing protocol to update routes dynamically and  adapt the 
network topology to potential failures. For that purpose, RPL 
supports two integral repair mechanisms, in particular local 
repair and global repair [6]. 

When a node detects a network failure (e.g. a link between 
two nodes fails), it triggers local repair (see Fig. 2). It consists 
in searching for a backup path urgently without attempting to 
repair the entire DODAG. However, this alternate recovery 
path may not be the best path with respect to the defined OF. 

The second mechanism is the global repair; it prompts the 
fundamental reconstruction of the entire network topology, but 
on the expense of additional control traffic in the network [1]. 
Nodes in the new DODAG version can choose a new position 
whose rank is not dependent on the previous one. The global 
repair is considered as an entire re-optimization of the routes. 
However, there are times when the nodes are unreachable 
during the DODAG rebuilding process. Therefore, relying 
solely on global repairs is neither efficient, in terms of the 
number of control messages, nor reliable especially for 
critical-time IoT applications where there is no tolerance for 
nodes unreachability. 

             
Fig. 2. A DODAG after the local repairs. Borders of inactive nodes are dotted, 
repaired routes are dashed, the root is shaded, and the numbers adjacent to the 
circles are the ranks [12]. 

 

C. Vertex Cover & Tree Decompositions 

The Vertex Cover Problem (VCP) is a well known NP-
hard graph optimization problem. VCP is defined over an 
undirected graph G = (V, E) and searches for a set of vertices 
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 S ⊆ V such that for each edge e ∈ E at least one of its 
endpoints belongs to S and |S| is as small as possible.  

There are several general approaches for attacking NP-
hard problems, among them approximation algorithms, fixed-
parameter algorithms, and heuristics. VCP is one of the best 
studied problems concerning fixed-parameter tractability [8]. 
Several techniques in parameterized complexity were 
successfully applied to VCP, as for instance data reduction, 
depth-bounded search trees, and dynamic programming [9]. 

Another approach for solving NP-hard graph optimization 
problems is the concept of tree decompositions for graphs, 
which was introduced by Robertson and Seymour [10] and 
plays an important role in algorithmic graph theory. 

Tree decompositions were motivated by the observation 
that many NP-complete problems are easy to solve on trees, 
connected graphs without cycles [5]. Trees are restricted 
structures when compared with general graphs; [10] addressed 
how hard problems can be solved for graphs that are "like" 
trees. Tree decompositions are the formal way to describe the 
“tree-likeness” of a given graph [8].  See Fig. 3 for an example 
of tree decompositions. 

 

Fig. 3. Example of a graph G and its corresponding tree 
decomposition T [8]. 

In the following definitions we give a brief description of 
tree decomposition, treewidth, and nice-tree decomposition. 
Fig. 3 illustrates an example of an optimal tree decomposition 
T.  T is optimal in the sense that there is no tree decomposition 
for the given graph G such that every bag contains fewer than 
three vertices. Observe that the properties of tree 
decompositions as stated in Definition 1 hold [5]. 

The concept of treewidth has been proven to be very useful 
in algorithmic graph theory. Several problems that are NP-
hard on general graphs are polynomial-time (some even 
linear-time) solvable on graphs with bounded treewidth. These 
problems include graph coloring and vertex cover [3]. 

The usual approach of tree decomposition based 
algorithms is dynamic programming. The fact that the running 
time of dynamic programming algorithms on tree 

decompositions is commonly of the complexity O(c
k
 * P(n)), 

where k is the width of the tree decomposition, P(n) is a 
polynomial function of n, and n is the size of the instance, is 
useful for our problem. As these algorithms can be executed in 
a reasonable amount of time on graphs where k is relatively 
small (less than 20, for example) [11]. If we restrict graph 
problems to graphs with small tree decompositions, we can 
solve many NP-hard problems by using dynamic 
programming. Such problems are called Fixed-Parameter 
Tractable (FPT) [3] because they have algorithms that run in 
polynomial-time when the parameter, namely treewidth of the 
tree decomposition is fixed. Furthermore, algorithmic 
solutions are often easier when working with a nice-tree 
decomposition (cf. Definition 3) instead of a tree 
decomposition[11]. 
 

 

 

Definition 1: Tree Decomposition [8] 

Let G = (V, E) be a graph. A tree decomposition of G is
a pair ({Xi: i ∈ I}, T), where each Xi ⊆ V is called a bag, 
and T is a tree with the elements of I as nodes. The 
following three properties must hold: 

1. ⋃ ��  �∈�  = V, 
2. for every edge e ∈ E there exists a bag Xi  with 

i ∈ I and e ⊆ Xi, and 
3. for all i, j, k ∈  I, if j lies on the path from i to k 

in T then Xi ∩Xk  ⊆ Xj. 
The third property is equivalent to the requirement that, 
for each v ∈ V, the nodes of all bags containing v induce 
a subtree of T. 
   

Definition 3: Nice-Tree Decomposition [8] 

A tree decomposition ({Xi: i ∈ I}, T) is nice if: 

• T is rooted at a designated node r ∈ I, called root 
node, 

• every vertex of T has at most two children (i.e. 
the tree is a binary tree), 

• if i is a leaf of T, |�(�)| = 1 (I(i) is called a start 
bag), 

• if i has two children j and k, I(i) = I( j) = I(k) (
in this case I(i) is called a join bag), and 

• if i has one child j, then either: 
o |�(�)| = |�(�)| –1 and I(i) ⊂ I( j), ( in 

this case I(i) is called a forget bag), or 
o |�(�)| = |�(�)| +1 and I(j) ⊂ I(i) (in this 

case I(i) is called an introduce bag).  

Definition 2: Treewidth [8] 

The width of a tree decomposition is the maximum of 
|�(�)| – 1 over all v ∈ VT.   
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Based on this information, converting a DODAG into a 
nice-tree decomposition with bounded treewidth will yield the 
advantage of solving many NP-hard graph optimization 
problems in polynomial-time. This approach can be used in 
our monitoring problem, which we addressed in this paper. 

III. CONVERTING A DODAG INTO NICE-TREE DECOMPOSITION 

WITH UNITY TREEWIDTH 

A. IoT Link Monitoring Requirements  

For critical-time IoT applications in wireless networks, it is 
crucial to keep track of all the links in the network, especially 
the inactive ones which are not currently used for routing. 

In order to meet the reliability requirements for critical 
applications, we were motivated to study the problem of 
network monitoring for IoT through monitoring the links in 
DODAGs. We propose a distributed monitoring model where 
there are several nodes carefully placed on the DODAG, 
which are responsible detecting and localizing network 
failures. 

One of the main challenges for network monitoring is 
determining where to embed the monitoring nodes. Moreover, 
the monitoring computational cost, battery and memory 
requirements should be minimal in order to satisfy the low 
cost and energy constraints of IoT networks. Therefore, it is 
important to minimize the number of monitoring nodes placed 
on the graph, meanwhile balancing the monitoring load to 
maintain the status of all links and also maximize network 
lifetime. In other words, the objective is minimizing the 
number of monitoring nodes that “cover” the entire graph. 

Taking the stated requirements into consideration, finding 
out the minimum number of monitoring nodes placed on the 
graph to keep track of all the links in the network can be 
modeled as the classic VCP. However, as mentioned in 
Section 2.3, VCP is NP-hard for general graphs and FPT when 
solved by dynamic programming on tree decompositions with 
bounded treewidth.   

In view of this information, converting a DODAG into a 
nice-tree decomposition with bounded treewidth will yield the 
advantage of solving the generally NP-hard graph monitor 
placement problem in this special graph in polynomial-time.  
To the best of our knowledge, there is no work that tended to 
this problem in the literature.  

B. Proposed Algorithm 

A DODAG consists of a set of vertices vj: vj ∈ V, where j is 
a unique identifier for each vertex in D, and a set of edges E. 
Each vertex in the DODAG is connected via an edge ej ∈ E to 
one of three types of nodes: parents P(vj) (preferred and 
alternative), children C(vj) or siblings S(vj).  

The objective of the proposed algorithm (Algorithm 1) is 
to convert any DODAG D, into a nice-tree decomposition 
with unity treewidth, while holding the properties of nice-tree 
decompositions in Definition 3. Bounding the treewidth to the 
value of one will have the effect of reducing the complexity of 
solving the VCP on the DODAG to be polynomial-time, 
which is the main contribution of this paper.   

  Algorithm 2: ConstructBinaryTree 

  Input: Bag B and Z = required number of leaves 
  Output: A binary tree with the required number of  
                leaves and all its bags are equal to B 
  Step 1:  Create two branches; where each branch has a 

               bag  = B  

  Step 2:  If (Z  > 2)  

         then t = ConstructBinaryTree (B, Z – 1) 
                   Augment the bag at the right branch with t 

             End If 

  END  

 

Algorithm 1: Convert DODAG into Nice-Tree with 

Treewidth 1 

Input: DODAG D = ({vj: vj ∈ V },  E),   

Output:  Nice Tree Decomposition ({Xi: i ∈ I}, T) with  
                unity Treewidth  
Let cr  ∈ C(vj) where C(vj) is the set of children of vertex  
       vj in DODAG D 
Let sr  ∈  S(vj) where S(vj) is the set of siblings connected  
      to vertex vj in DODAG D 

Let the set of Non-Leaf nodes in D be {NL: NL =  

       ⋃ �� ∈ � where ��(�� )�  + ��(�� )�   > 0}  

Step 1 Initialization 
    Step 1.1 Initialize an empty tree T then set its root to a  
             bag that only includes the DODAG root  
    Step 1.2 Sort ascendingly NL according to the ranks of  
             vj 

Step 2 While NL≠ ∅ do 

     Step 2.1 Select vj from NL {its top vertex} 
     Step 2.2 Search T for the first bag Xi = {vj} using  
                   breadth first search 

      Step 2.3 Set L = C(vj) ∪ S(vj) where sr ∈ NL   

        Step 2.4 Let no_of_ required_leaves =   |�|  
     Step 2.5 If (no_of_ required_leaves  > 1)  
                      then t =  ConstructBinaryTree ( Xi, no_of_  
                                     required_leaves )  
                      At Xi augment T with t 

     End If 

     Step 2.6 While  l ≤ the no_of_ required_leaves  
             Step 2.6.1 Make leafƖ  a ‘forget bag’ via branching  
                              out one child Xk,  where Xk =  {vj, vq}  
                              and vq ∈ �      

             Step 2.6.2 Make Xk an ‘introduce bag’ via  
                              branching out one child{vq} 
             Step 2.6.3 L = L\ vq  
             Step 2.6.4 l= l + 1 
             END While 

     Step 2.7 NL = NL\ vj 

   END While 

END      

 



 

 

TABLE I.  ALGORITHM 1 VARIABLES 

Variable  Description 

D The Destination Oriented Directed 
Acyclic Graph composed of a set of 
vertices vj ∈ V and a set of edges ej ∈ E 

C(vj) The entire set of children of  vertex vj 

S(vj). The entire set of siblings of vertex vj  

cr A child of  vertex vj 

sr A sibling of  vertex vj 

Xi A bag containing subset of V  

I The entire set of bags in the tree 
decomposition  

T A tree with the elements of I as nodes 

NL The set of Non-Leaf nodes in the 
DODAG 

no_of_required_ 
leaves 

The number of required leaves for vj in 
the tree decomposition. 

 

The algorithm is divided mainly into an initialization step 
(Step 1) and a main loop (Step 2). TABLE I summarizes the 
variables in Algorithm 1. Step 1.1 initializes a binary tree T 
and sets its root with a bag that only contains the DODAG 
root, which is considered as the destination of any node in D. 
In Step 1.2 we take all the Non-Leaf nodes in the DODAG, 
store them in a vector (NL), and then sort them ascendingly 
according to their ranks in D. The main part of the algorithm is 
implemented in Step 2, which iterates over the vector NL and 
constructs a binary tree for each of those vertices; by calling 
the recursive subroutine ConstructBinaryTree (see 
Algorithm 2). 

 Taking the first vertex in NL, steps 2.3 and 2.4 determine 
the required number of leaves (no_of_required_leaves) 
associated with it, which is the number of its children plus the 
number of siblings connected to it that are not already 
included in the tree decomposition.  

The recursive subroutine ConstructBinaryTree is called 
at step 2.5, which takes as input a bag B and the required 
number of leaves and returns a binary tree t with the required 
number of leaves and all its bags are set equal to the input bag 
B. The returned tree t is then augmented with T at the right 
location; the location of the bag at current iteration. 

Step 2.6, is an inner loop for all the leaves (the vertex’s 
children or siblings that are not already included in T). In step 
2.6.1, we make the leaf a ‘forget bag’ via branching out one 
child bag that contains two elements: the leaf and one of the 
vertex’s children (or siblings), in list L. Then in step 2.6.2, we 
make this child bag an ‘introduce bag’ via branching out a 
child bag that contains only one element; i.e. the vertex’s child 
or sibling. 

 

 
  

    Fig. 4 (a). DODAG D.               Fig. 4 (b).  Nice-tree decomposition of  
                                                                DODAG D with unity treewidth. 
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Finally, in step 2.6.3, we remove this vertex’s child or sibling 
from the L list. After the algorithm exits this inner loop, the 
vertex is then removed from the vector NL at step 2.7; and the 
outer loop continues until there are no more vertices left in 
NL. Fig. 4(a) shows a DODAG D and Fig. 4(b) shows the 
output of Algorithm 1, which is the nice-tree T of D with 
unity treewidth. 

C. Proof of Termination 

Lemma 1: The conversion of a DODAG (Algorithm 1) into a 
Nice-Tree terminates. 
Proof: In order to prove that Algorithm 1 terminates we need 
to show that the two nested loops, at steps 2 and 2.6 eventually 
terminate. At Step 2 the While loop starts with a finite subset 
of vertices, namely NL. The cardinality of NL is altered only at 
step 2.7, where it decreases by one. Since NL is finite and is 
strictly decreasing in cardinality with each iteration of the 
loop, the loop condition (NL≠ ∅) is eventually falsified and 
therefore the loop terminates. 
At step 2.6, the second loop iterates until l is greater than a 
finite integer quantity, the no_of_required_leaves. Note that l 
initially has the value of one, and the value of the 
no_of_required_leaves  is the cardinality of the finite subset of 
vertices L. The quantity (no_of_required_leaves – l) is an 
integer that strictly decreases with each iteration of the loop. 
Therefore, eventually (no_of_required_leaves – l) is a 
negative quantity, thus (no_of_required_leaves  > l ), and the 
loop terminates. 
 
Lemma 2: The construction of a binary tree (Algorithm 2) 
terminates.  
Proof: Since Algorithm 2 is a recursive function, to prove 
that it terminates we need to show that its arguments get 
strictly smaller whenever there is a recursive call. The 
argument Z which is the required number of leaves is a finite 



 
 

integer that starts with a value greater than one, then strictly 
decreases until it reaches the value two, where the condition   
(Z > 2) is falsified and the recursive function terminates. 

IV. ANALYSIS 

A. Complexity Analysis 

In any nice-tree decomposition produced by Algorithm 1, 
there are two types of bags in the nice-tree namely:  

• single-element bags, which contain one vertex of the 
DODAG, and  

• two-elements bags, which contain two vertices that 
are connected via an edge in the DODAG.  
 

The number of unique single-element bags is equal to the 
number of vertices in the DODAG. In addition, any two-
elements bag will always be a unique bag; as the algorithm is 
designed to only map once an edge into a corresponding two-
elements bag.  Hence, we can conclude that the number of 
two-element bags is equal to the number of edges in the 
DODAG. Therefore, the number of unique bags in the nice-
tree decomposition is simply the summation of the number of 
vertices and the number of edges in the DODAG.  

Single-element bags are either Non-Leaf single-element 
bags or leaf single-element bags. By experimental analysis, we 
identified the number of occurrences of any Non-Leaf single-
element bag as {2*(no_of_required_leaves) – 1}. Moreover, 
the number of occurrences of any leaf single-element bag is 
determined by the number of alternative parents and siblings 
connected to its corresponding vertex, in the DODAG. Hence, 
we can conclude that the number of occurrences for both leaf 
and Non-Leaf single-element bags is of the order of O(v) at 
maximum, where v is the number of vertices. This leads to the 
conclusion that the total number of single-element bags is at 
maximum v2. 

The complexity of the proposed algorithm is measured by 
the number of bags generated for each DODAG to be a nice-
tree decomposition. Therefore, we can conclude that the 
proposed algorithm has a complexity of O(m + v

2
) , where m 

is the number of edges in the DODAG, which is polynomial in 
time. 

Moreover, as mentioned before in Section 3, the running 
time of dynamic programming algorithms on tree 
decompositions is typically of the form O(c

k
 * P(n)), where k 

is the treewidth and n is the size of the instance. Using the 
proposed algorithm for the construction of the nice-tree 
decomposition from DODAGs, we will have the treewidth to 
be only one. Consequently, our particular VCP turns out to be 
just polynomial in time. 

 

B. Discussion 

The initial objective was to monitor the unreliable links in 
a 6LowPAN network for IoT. Distributed monitoring is 
achieved via placing several monitoring nodes on the network, 
which track the status of the links in their neighborhood. We 
modeled the problem as the classic VCP, which finds out the 
minimum number of nodes that cover all links. For the 

purpose of reducing the complexity of solving such NP-hard 
problem, we proposed converting the DODAG into a nice-tree 
decomposition with unity treewidth. In order to verify that 
modeling the problem in such a way actually reaches the 
initial objective stated above, we need to prove that the 
DODAG maps the entire network, i.e. it contains a vertex and 
an edge for every node and link in the 6LoWPAN network. 

As mentioned in Section 2 the DODAG construction in 
RPL is based on the NDP in 6LoWPAN which provides the 
candidate neighbor set for each node, but the exact policies for 
selecting neighbors and parents is implementation dependent 
and driven by the OF [4]. 

Let the candidate neighbor set be N(vj), and in Algorithm 
1 we defined the set of parents, children and siblings of each 
vertex as P(vj), C(vj) and  S(vj), respectively. If we design the 
OF to construct the DODAG such that the DODAG maps 
exactly the entire network, i.e.:  

P(vj) ∪ C(vj) ∪ S(vj)  = N(vj)                        (1) 
therefore, solving the VCP on the general graph G that maps 
the network is the same as solving VCP on the DODAG D, 
i.e.: 

VCP(D) = VCP(G)                                       (2) 
By definition of tree decompositions (cf. Definition 1), each 
vertex and edge in D is present in T, therefore 

VCP(T) = VCP(D)                                        (3) 
From (1), (2) and (3), we conclude that solving the VCP on 
the nice-tree achieves the objective of monitoring all the links 
of the network.  

V. CONCLUSIONS & FUTURE WORK 

In this paper, we investigated a strategy for increasing the 
robustness in connectivity of IoT for critical-time applications 
via a proactive monitoring of links in the DODAG constructed 
by RPL. We considered the Vertex Cover modeling of our 
problem, where the minimum number of monitoring nodes is 
required to cover the entire DODAG.  

The VCP is a known NP-hard problem in general graphs 
but there exist Fixed Parameter Tractable dynamic 
programming algorithms for solving the VCP on tree 
decompositions. We developed a polynomial-time algorithm 
that converts the DODAG into a nice-tree decomposition with 
unity treewidth. This new strategy yields a significant 
reduction in the complexity of solving VCP on DODAGs to 
be only polynomial-time solvable. Meanwhile, it achieves the 
objective of monitoring all the links in a 6LowPAN network. 

By definition of vertex cover, we now know the minimum 
number of required monitors to cover the entire network. 
However, we don't know the exact placement of the monitors. 
Therefore, it remains a challenge for future research to decide 
which nodes should be configured as monitors in order to 
minimize and balance the monitoring load, decrease energy 
consumption of the nodes and consequently maximize the 
lifetime of the network.  
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