

Distributed Monitoring in 6LoWPAN based Internet
of Things

B. Mostafa1,2,3, A. Benslimane2, E. Boureau1 , M. Molnar1, and M. Saleh3

1. LIRMM, University of Montpellier, 161, rue Ada 34095 Montpellier Cedex 5, France
2. CRI, French University in Egypt, B.P 21 - El Shorouk City, 11837, Egypt
3. Faculty of Computers and Information. Cairo University, 5 Dr. Ahmed Zewail Street, Postal Code: 12613, Orman, Giza, Egypt

Abstract—The emergence of the Internet of Things (IoT) is

introducing more and more services and applications such as

smart cities. For some services, the availability of elements and

the connectivity between them are necessary. The robust

functioning of a fragile and often dynamic system in IoT needs

strong monitoring which is investigated in this paper. IPv6

Routing Protocol for Low Power and Lossy Networks (RPL) is

the standardized routing protocol over IP-connected IoT

networks. In tandem with RPL, we propose a new solution which

aims to achieve distributed monitoring with minimal

computational complexity. The main objective is to increase

robustness in IoT via monitoring the links in the Destination

Oriented Directed Acyclic Graphs (DODAG) constructed by

RPL. Although RPL has a reactive repairing mechanism to

tackle robustness in connectivity in case of node failures, we

found that for real-time critical applications it is important to use

proactive approaches for preventing faults and making recovery

for connectivity faster. The problem can be modeled as a Vertex

Cover Problem (VCP) on the DODAG. Such problem is a well

known NP-hard optimization problem. The monitoring should be

simple and energy aware. We demonstrate that the monitor

placement in our case is only Fixed-Parameter Tractable, and

also polynomial-time solvable, which is the best case.

Keywords—IoT; RPL; link monitoring; Vertex Cover.

I. INTRODUCTION

The 6LowPAN based Internet of Things (IoT) networks
tend to experience unexpected communication problems
during deployment, because resource-constrained embedded
devices are unreliable by nature for a variety of reasons, such
as uncertain radio connectivity and battery drain [1]. To that
end, monitoring techniques for detecting, localizing and
remedying network failures in IoT will definitely develop in
significance. The primary objective of network monitoring in
general is mapping the symptoms of the detected problems to
possible root causes to take corrective measures [2].

Low power and Lossy Networks (LLN) experience several
communication challenges such as energy and computational
limitations of devices and extensive protocol overheads
against memory. To handle such challenges, the Internet
Engineering Task Force (IETF) has standardized the Routing
Protocol for Low Power and Lossy Networks (RPL) as
the routing protocol for IP-connected IoT [3] [4]. RPL is a

self-healing routing and topology control protocol as it is able
to respond to some node or link failures. It uses reactive local
and global repair approaches for network recovery. However,
the recovery time, which is the time required to establish a
new route could be critical. If for any reason, the links
connecting the node with its neighbors are all broken, as in the
case of a sudden failure of multiple links, the node will not be
able to regain connectivity quickly.

 RPL favors the use of reactive repair approaches as they
are more energy-efficient; to minimize the cost of monitoring
links that are not being used [4]. Furthermore, the neighbor
unreachability detection (NUD) is not mandatory in RPL and
active mechanisms for probing neighbors regularly do not
exist in ContikiRPL implementation [5] [6].

Although a significant number of IoT applications are not
time-sensitive, there is a whole class of real-time, mission-
critical applications; where data must be processed and shared
instantly and within strict reliability constraints. For instance,
critical control and fault detection applications; where
corrective actions must be taken with little delay.

For critical, real-time IoT applications, instead of the
embedded RPL reactive repair approaches, proactive
monitoring mechanisms should be used for early detection and
prevention of network failures. Node and link failures could
then be detected beforehand, as a kind of preventive
maintenance. This could greatly improve the robustness in
connectivity, reliability and eventually Quality of Service
(QoS) in the network, which will significantly increase the
uptake of the technology by stakeholders. The added cost for
link monitoring could be tolerated for critical-time IoT
applications as it will help accelerate recovery, and decrease
node unreachability times.

Consequently, we were motivated to investigate the
problem of proactive link monitoring for IoT. The main
objective is to increase robustness in IoT via monitoring the
links in the Destination Oriented Directed Acyclic Graphs
(DODAG) constructed by RPL. Distributed monitoring can be
achieved by placing multiple monitoring nodes on the
network. Those nodes are responsible for anticipating
node/link failures by continuously tracking the status of the
links in the DODAG and taking the corrective actions before
failure happens. In this paper, we focus on calculating the

2016 International Workshop on Scalable Internet of Things

978-1-5090-1743-0/16/$31.00 ©2016 IEEE

minimum number of monitoring nodes required to track the
entire set of links. We modeled the problem as a Vertex Cover
Problem (VCP) on the DODAG. VCP is NP-hard, which
implies that unless P = NP, efficient algorithms for solving it
don't exist [13]. However, due to the battery and
computational constraints of embedded devices, the
monitoring should be simple and energy-aware. We propose
an algorithm to convert a DODAG into a nice-tree
decomposition which makes solving the generally NP-hard
VCP on this special graph achieved in polynomial-time.

The rest of the paper is organized as follows: section 2 is a
brief overview of the RPL topology construction, repair
mechanisms and a background of the concepts of vertex cover
and tree decomposition problems. Section 3 presents the
monitoring requirements, the proposed algorithm and proof of
termination, followed by an analysis of the algorithm in
Section 4. The conclusions and future research are presented
in Section 5.

Fig. 1. A sample RPL DODAG that has N nodes. The root is shaded,
the numbers adjacent to the circles are the ranks, and
the routes through siblings are dahsed.

(0)

(9) (10) (7)

(3) (5) (5)

(1) (1) (1)

1

2 3 4

5 6 7

8 9 10

II. BACKGROUND

A. RPL DODAG

RPL is a versatile protocol that supports different modes of
operation: many-to-one communication from the constrained
nodes towards the root (typically the 6LoWPAN border router
6BR), one-to-many communication from the root to the
constrained nodes (constrained in terms of battery and
memory, etc.) and, one-to-one communication between the
constrained nodes. The basic component of RPL is a
Destination Oriented Directed Acyclic Graph (DODAG), a
sample is shown in Fig. 1. It is a hierarchical organization,
where each node has a node ID, one or more parents (except
for the DODAG root), and a list of neighbors [7].

Nodes also have a rank that determines their individual
position in the hierarchy with respect to the DODAG root and
relative to other nodes, which are the numbers adjacent to the
nodes in Fig.1. In RPL, the rank as well as the parent selection
is calculated via an Objective Function (OF) that might use
factors such as link quality, node energy and link reliability in
its calculation [5].

The DODAG construction depends on the Neighbor
Discovery Protocol (NDP) and Upward route discovery
protocol in 6LoWPAN. They allow a node to join a DODAG
by discovering neighbors that are members of the DODAG
and identifying a set of parents [4]. The protocols build three
logical sets of link-local nodes. Starting by the candidate
neighbor set, which is a subset of the nodes that can be
reached through link-local multicast. Then, the parent set,
which is a restricted subset of the candidate neighbor set.
Finally, the preferred parent set, a member (or members) of
the parent set which is the preferred next hop in Upward
routes. The exact policies for selecting neighbors is
implementation dependent and driven by the OF.

B. DODAG Repair Mechanisms

Repair mechansims are of foremost significance for a
 routing protocol to update routes dynamically and adapt the
network topology to potential failures. For that purpose, RPL
supports two integral repair mechanisms, in particular local
repair and global repair [6].

When a node detects a network failure (e.g. a link between
two nodes fails), it triggers local repair (see Fig. 2). It consists
in searching for a backup path urgently without attempting to
repair the entire DODAG. However, this alternate recovery
path may not be the best path with respect to the defined OF.

The second mechanism is the global repair; it prompts the
fundamental reconstruction of the entire network topology, but
on the expense of additional control traffic in the network [1].
Nodes in the new DODAG version can choose a new position
whose rank is not dependent on the previous one. The global
repair is considered as an entire re-optimization of the routes.
However, there are times when the nodes are unreachable
during the DODAG rebuilding process. Therefore, relying
solely on global repairs is neither efficient, in terms of the
number of control messages, nor reliable especially for
critical-time IoT applications where there is no tolerance for
nodes unreachability.

Fig. 2. A DODAG after the local repairs. Borders of inactive nodes are dotted,
repaired routes are dashed, the root is shaded, and the numbers adjacent to the
circles are the ranks [12].

C. Vertex Cover & Tree Decompositions

The Vertex Cover Problem (VCP) is a well known NP-
hard graph optimization problem. VCP is defined over an
undirected graph G = (V, E) and searches for a set of vertices

5

0

3

 1

 6

8

4

2

9

7

(11)

(9)
(7)

(0)

(5)

(3)

(5) (5)

(1)

(5)

 S ⊆ V such that for each edge e ∈ E at least one of its
endpoints belongs to S and |S| is as small as possible.

There are several general approaches for attacking NP-
hard problems, among them approximation algorithms, fixed-
parameter algorithms, and heuristics. VCP is one of the best
studied problems concerning fixed-parameter tractability [8].
Several techniques in parameterized complexity were
successfully applied to VCP, as for instance data reduction,
depth-bounded search trees, and dynamic programming [9].

Another approach for solving NP-hard graph optimization
problems is the concept of tree decompositions for graphs,
which was introduced by Robertson and Seymour [10] and
plays an important role in algorithmic graph theory.

Tree decompositions were motivated by the observation
that many NP-complete problems are easy to solve on trees,
connected graphs without cycles [5]. Trees are restricted
structures when compared with general graphs; [10] addressed
how hard problems can be solved for graphs that are "like"
trees. Tree decompositions are the formal way to describe the
“tree-likeness” of a given graph [8]. See Fig. 3 for an example
of tree decompositions.

Fig. 3. Example of a graph G and its corresponding tree
decomposition T [8].

In the following definitions we give a brief description of
tree decomposition, treewidth, and nice-tree decomposition.
Fig. 3 illustrates an example of an optimal tree decomposition
T. T is optimal in the sense that there is no tree decomposition
for the given graph G such that every bag contains fewer than
three vertices. Observe that the properties of tree
decompositions as stated in Definition 1 hold [5].

The concept of treewidth has been proven to be very useful
in algorithmic graph theory. Several problems that are NP-
hard on general graphs are polynomial-time (some even
linear-time) solvable on graphs with bounded treewidth. These
problems include graph coloring and vertex cover [3].

The usual approach of tree decomposition based
algorithms is dynamic programming. The fact that the running
time of dynamic programming algorithms on tree

decompositions is commonly of the complexity O(c
k
 * P(n)),

where k is the width of the tree decomposition, P(n) is a
polynomial function of n, and n is the size of the instance, is
useful for our problem. As these algorithms can be executed in
a reasonable amount of time on graphs where k is relatively
small (less than 20, for example) [11]. If we restrict graph
problems to graphs with small tree decompositions, we can
solve many NP-hard problems by using dynamic
programming. Such problems are called Fixed-Parameter
Tractable (FPT) [3] because they have algorithms that run in
polynomial-time when the parameter, namely treewidth of the
tree decomposition is fixed. Furthermore, algorithmic
solutions are often easier when working with a nice-tree
decomposition (cf. Definition 3) instead of a tree
decomposition[11].

Definition 1: Tree Decomposition [8]

Let G = (V, E) be a graph. A tree decomposition of G is
a pair ({Xi: i ∈ I}, T), where each Xi ⊆ V is called a bag,
and T is a tree with the elements of I as nodes. The
following three properties must hold:

1. ⋃ �� �∈� = V,
2. for every edge e ∈ E there exists a bag Xi with

i ∈ I and e ⊆ Xi, and
3. for all i, j, k ∈ I, if j lies on the path from i to k

in T then Xi ∩Xk ⊆ Xj.
The third property is equivalent to the requirement that,
for each v ∈ V, the nodes of all bags containing v induce
a subtree of T.

Definition 3: Nice-Tree Decomposition [8]

A tree decomposition ({Xi: i ∈ I}, T) is nice if:

• T is rooted at a designated node r ∈ I, called root
node,

• every vertex of T has at most two children (i.e.
the tree is a binary tree),

• if i is a leaf of T, |�(�)| = 1 (I(i) is called a start
bag),

• if i has two children j and k, I(i) = I(j) = I(k) (
in this case I(i) is called a join bag), and

• if i has one child j, then either:
o |�(�)| = |�(�)| –1 and I(i) ⊂ I(j), (in

this case I(i) is called a forget bag), or
o |�(�)| = |�(�)| +1 and I(j) ⊂ I(i) (in this

case I(i) is called an introduce bag).

Definition 2: Treewidth [8]

The width of a tree decomposition is the maximum of
|�(�)| – 1 over all v ∈ VT.

5

7

6 1

2

3 8

4 9

10

11

12

1 5

6

3 4

1 6

7

2 6

7

2 3

7

3 7

8

3 8

9

6 7

1

7 1

11

1 1

1

Based on this information, converting a DODAG into a
nice-tree decomposition with bounded treewidth will yield the
advantage of solving many NP-hard graph optimization
problems in polynomial-time. This approach can be used in
our monitoring problem, which we addressed in this paper.

III. CONVERTING A DODAG INTO NICE-TREE DECOMPOSITION

WITH UNITY TREEWIDTH

A. IoT Link Monitoring Requirements

For critical-time IoT applications in wireless networks, it is
crucial to keep track of all the links in the network, especially
the inactive ones which are not currently used for routing.

In order to meet the reliability requirements for critical
applications, we were motivated to study the problem of
network monitoring for IoT through monitoring the links in
DODAGs. We propose a distributed monitoring model where
there are several nodes carefully placed on the DODAG,
which are responsible detecting and localizing network
failures.

One of the main challenges for network monitoring is
determining where to embed the monitoring nodes. Moreover,
the monitoring computational cost, battery and memory
requirements should be minimal in order to satisfy the low
cost and energy constraints of IoT networks. Therefore, it is
important to minimize the number of monitoring nodes placed
on the graph, meanwhile balancing the monitoring load to
maintain the status of all links and also maximize network
lifetime. In other words, the objective is minimizing the
number of monitoring nodes that “cover” the entire graph.

Taking the stated requirements into consideration, finding
out the minimum number of monitoring nodes placed on the
graph to keep track of all the links in the network can be
modeled as the classic VCP. However, as mentioned in
Section 2.3, VCP is NP-hard for general graphs and FPT when
solved by dynamic programming on tree decompositions with
bounded treewidth.

In view of this information, converting a DODAG into a
nice-tree decomposition with bounded treewidth will yield the
advantage of solving the generally NP-hard graph monitor
placement problem in this special graph in polynomial-time.
To the best of our knowledge, there is no work that tended to
this problem in the literature.

B. Proposed Algorithm

A DODAG consists of a set of vertices vj: vj ∈ V, where j is
a unique identifier for each vertex in D, and a set of edges E.
Each vertex in the DODAG is connected via an edge ej ∈ E to
one of three types of nodes: parents P(vj) (preferred and
alternative), children C(vj) or siblings S(vj).

The objective of the proposed algorithm (Algorithm 1) is
to convert any DODAG D, into a nice-tree decomposition
with unity treewidth, while holding the properties of nice-tree
decompositions in Definition 3. Bounding the treewidth to the
value of one will have the effect of reducing the complexity of
solving the VCP on the DODAG to be polynomial-time,
which is the main contribution of this paper.

 Algorithm 2: ConstructBinaryTree

 Input: Bag B and Z = required number of leaves
 Output: A binary tree with the required number of
 leaves and all its bags are equal to B
 Step 1: Create two branches; where each branch has a

 bag = B

 Step 2: If (Z > 2)

 then t = ConstructBinaryTree (B, Z – 1)
 Augment the bag at the right branch with t

 End If

 END

Algorithm 1: Convert DODAG into Nice-Tree with

Treewidth 1

Input: DODAG D = ({vj: vj ∈ V }, E),

Output: Nice Tree Decomposition ({Xi: i ∈ I}, T) with
 unity Treewidth
Let cr ∈ C(vj) where C(vj) is the set of children of vertex
 vj in DODAG D
Let sr ∈ S(vj) where S(vj) is the set of siblings connected
 to vertex vj in DODAG D

Let the set of Non-Leaf nodes in D be {NL: NL =

 ⋃ �� ∈ � where ��(��)� + ��(��)� > 0}

Step 1 Initialization
 Step 1.1 Initialize an empty tree T then set its root to a
 bag that only includes the DODAG root
 Step 1.2 Sort ascendingly NL according to the ranks of
 vj

Step 2 While NL≠ ∅ do

 Step 2.1 Select vj from NL {its top vertex}
 Step 2.2 Search T for the first bag Xi = {vj} using
 breadth first search

 Step 2.3 Set L = C(vj) ∪ S(vj) where sr ∈ NL

 Step 2.4 Let no_of_ required_leaves = |�|
 Step 2.5 If (no_of_ required_leaves > 1)
 then t = ConstructBinaryTree (Xi, no_of_
 required_leaves)
 At Xi augment T with t

 End If

 Step 2.6 While l ≤ the no_of_ required_leaves
 Step 2.6.1 Make leafƖ a ‘forget bag’ via branching
 out one child Xk, where Xk = {vj, vq}
 and vq ∈ �

 Step 2.6.2 Make Xk an ‘introduce bag’ via
 branching out one child{vq}
 Step 2.6.3 L = L\ vq
 Step 2.6.4 l= l + 1
 END While

 Step 2.7 NL = NL\ vj

 END While

END

TABLE I. ALGORITHM 1 VARIABLES

Variable Description

D The Destination Oriented Directed
Acyclic Graph composed of a set of
vertices vj ∈ V and a set of edges ej ∈ E

C(vj) The entire set of children of vertex vj

S(vj). The entire set of siblings of vertex vj

cr A child of vertex vj

sr A sibling of vertex vj

Xi A bag containing subset of V

I The entire set of bags in the tree
decomposition

T A tree with the elements of I as nodes

NL The set of Non-Leaf nodes in the
DODAG

no_of_required_
leaves

The number of required leaves for vj in
the tree decomposition.

The algorithm is divided mainly into an initialization step
(Step 1) and a main loop (Step 2). TABLE I summarizes the
variables in Algorithm 1. Step 1.1 initializes a binary tree T
and sets its root with a bag that only contains the DODAG
root, which is considered as the destination of any node in D.
In Step 1.2 we take all the Non-Leaf nodes in the DODAG,
store them in a vector (NL), and then sort them ascendingly
according to their ranks in D. The main part of the algorithm is
implemented in Step 2, which iterates over the vector NL and
constructs a binary tree for each of those vertices; by calling
the recursive subroutine ConstructBinaryTree (see
Algorithm 2).

 Taking the first vertex in NL, steps 2.3 and 2.4 determine
the required number of leaves (no_of_required_leaves)
associated with it, which is the number of its children plus the
number of siblings connected to it that are not already
included in the tree decomposition.

The recursive subroutine ConstructBinaryTree is called
at step 2.5, which takes as input a bag B and the required
number of leaves and returns a binary tree t with the required
number of leaves and all its bags are set equal to the input bag
B. The returned tree t is then augmented with T at the right
location; the location of the bag at current iteration.

Step 2.6, is an inner loop for all the leaves (the vertex’s
children or siblings that are not already included in T). In step
2.6.1, we make the leaf a ‘forget bag’ via branching out one
child bag that contains two elements: the leaf and one of the
vertex’s children (or siblings), in list L. Then in step 2.6.2, we
make this child bag an ‘introduce bag’ via branching out a
child bag that contains only one element; i.e. the vertex’s child
or sibling.

 Fig. 4 (a). DODAG D. Fig. 4 (b). Nice-tree decomposition of
 DODAG D with unity treewidth.

2
4 7

3

7

3 3

10
5 6

5 5 6 6

6 10 9 8

7 10

3 6 3 5

6 10

1

1 1

1 1

4
1 2 1 3

1 4

5 8 5 6 6 9

(0)

(9) (10) (7)

(3) (5) (5)

(1) (1) (1)

1

2 3 4

5 6 7

8 9 10

Finally, in step 2.6.3, we remove this vertex’s child or sibling
from the L list. After the algorithm exits this inner loop, the
vertex is then removed from the vector NL at step 2.7; and the
outer loop continues until there are no more vertices left in
NL. Fig. 4(a) shows a DODAG D and Fig. 4(b) shows the
output of Algorithm 1, which is the nice-tree T of D with
unity treewidth.

C. Proof of Termination

Lemma 1: The conversion of a DODAG (Algorithm 1) into a
Nice-Tree terminates.
Proof: In order to prove that Algorithm 1 terminates we need
to show that the two nested loops, at steps 2 and 2.6 eventually
terminate. At Step 2 the While loop starts with a finite subset
of vertices, namely NL. The cardinality of NL is altered only at
step 2.7, where it decreases by one. Since NL is finite and is
strictly decreasing in cardinality with each iteration of the
loop, the loop condition (NL≠ ∅) is eventually falsified and
therefore the loop terminates.
At step 2.6, the second loop iterates until l is greater than a
finite integer quantity, the no_of_required_leaves. Note that l
initially has the value of one, and the value of the
no_of_required_leaves is the cardinality of the finite subset of
vertices L. The quantity (no_of_required_leaves – l) is an
integer that strictly decreases with each iteration of the loop.
Therefore, eventually (no_of_required_leaves – l) is a
negative quantity, thus (no_of_required_leaves > l), and the
loop terminates.

Lemma 2: The construction of a binary tree (Algorithm 2)
terminates.
Proof: Since Algorithm 2 is a recursive function, to prove
that it terminates we need to show that its arguments get
strictly smaller whenever there is a recursive call. The
argument Z which is the required number of leaves is a finite

integer that starts with a value greater than one, then strictly
decreases until it reaches the value two, where the condition
(Z > 2) is falsified and the recursive function terminates.

IV. ANALYSIS

A. Complexity Analysis

In any nice-tree decomposition produced by Algorithm 1,
there are two types of bags in the nice-tree namely:

• single-element bags, which contain one vertex of the
DODAG, and

• two-elements bags, which contain two vertices that
are connected via an edge in the DODAG.

The number of unique single-element bags is equal to the
number of vertices in the DODAG. In addition, any two-
elements bag will always be a unique bag; as the algorithm is
designed to only map once an edge into a corresponding two-
elements bag. Hence, we can conclude that the number of
two-element bags is equal to the number of edges in the
DODAG. Therefore, the number of unique bags in the nice-
tree decomposition is simply the summation of the number of
vertices and the number of edges in the DODAG.

Single-element bags are either Non-Leaf single-element
bags or leaf single-element bags. By experimental analysis, we
identified the number of occurrences of any Non-Leaf single-
element bag as {2*(no_of_required_leaves) – 1}. Moreover,
the number of occurrences of any leaf single-element bag is
determined by the number of alternative parents and siblings
connected to its corresponding vertex, in the DODAG. Hence,
we can conclude that the number of occurrences for both leaf
and Non-Leaf single-element bags is of the order of O(v) at
maximum, where v is the number of vertices. This leads to the
conclusion that the total number of single-element bags is at
maximum v2.

The complexity of the proposed algorithm is measured by
the number of bags generated for each DODAG to be a nice-
tree decomposition. Therefore, we can conclude that the
proposed algorithm has a complexity of O(m + v

2
) , where m

is the number of edges in the DODAG, which is polynomial in
time.

Moreover, as mentioned before in Section 3, the running
time of dynamic programming algorithms on tree
decompositions is typically of the form O(c

k
 * P(n)), where k

is the treewidth and n is the size of the instance. Using the
proposed algorithm for the construction of the nice-tree
decomposition from DODAGs, we will have the treewidth to
be only one. Consequently, our particular VCP turns out to be
just polynomial in time.

B. Discussion

The initial objective was to monitor the unreliable links in
a 6LowPAN network for IoT. Distributed monitoring is
achieved via placing several monitoring nodes on the network,
which track the status of the links in their neighborhood. We
modeled the problem as the classic VCP, which finds out the
minimum number of nodes that cover all links. For the

purpose of reducing the complexity of solving such NP-hard
problem, we proposed converting the DODAG into a nice-tree
decomposition with unity treewidth. In order to verify that
modeling the problem in such a way actually reaches the
initial objective stated above, we need to prove that the
DODAG maps the entire network, i.e. it contains a vertex and
an edge for every node and link in the 6LoWPAN network.

As mentioned in Section 2 the DODAG construction in
RPL is based on the NDP in 6LoWPAN which provides the
candidate neighbor set for each node, but the exact policies for
selecting neighbors and parents is implementation dependent
and driven by the OF [4].

Let the candidate neighbor set be N(vj), and in Algorithm
1 we defined the set of parents, children and siblings of each
vertex as P(vj), C(vj) and S(vj), respectively. If we design the
OF to construct the DODAG such that the DODAG maps
exactly the entire network, i.e.:

P(vj) ∪ C(vj) ∪ S(vj) = N(vj) (1)
therefore, solving the VCP on the general graph G that maps
the network is the same as solving VCP on the DODAG D,
i.e.:

VCP(D) = VCP(G) (2)
By definition of tree decompositions (cf. Definition 1), each
vertex and edge in D is present in T, therefore

VCP(T) = VCP(D) (3)
From (1), (2) and (3), we conclude that solving the VCP on
the nice-tree achieves the objective of monitoring all the links
of the network.

V. CONCLUSIONS & FUTURE WORK

In this paper, we investigated a strategy for increasing the
robustness in connectivity of IoT for critical-time applications
via a proactive monitoring of links in the DODAG constructed
by RPL. We considered the Vertex Cover modeling of our
problem, where the minimum number of monitoring nodes is
required to cover the entire DODAG.

The VCP is a known NP-hard problem in general graphs
but there exist Fixed Parameter Tractable dynamic
programming algorithms for solving the VCP on tree
decompositions. We developed a polynomial-time algorithm
that converts the DODAG into a nice-tree decomposition with
unity treewidth. This new strategy yields a significant
reduction in the complexity of solving VCP on DODAGs to
be only polynomial-time solvable. Meanwhile, it achieves the
objective of monitoring all the links in a 6LowPAN network.

By definition of vertex cover, we now know the minimum
number of required monitors to cover the entire network.
However, we don't know the exact placement of the monitors.
Therefore, it remains a challenge for future research to decide
which nodes should be configured as monitors in order to
minimize and balance the monitoring load, decrease energy
consumption of the nodes and consequently maximize the
lifetime of the network.

REFERENCES

[1] N. Kushalnagar, G. Montenegro, and C. Schumacher,
“IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals,” 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4919.

[2] R. Jurdak, X. R. Wang, O. Obst, and P. Valencia,
“Intelligence-Based Systems Engineering,” A. Tolk and
L. C. Jain, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 309–325.

[3] M. S. Kintali S, "Computing Bounded Path
Decompositions in Logspace.," Electronic Colloquium on
Computational Complexity (ECCC), vol. 19, p. 126,
2012.

[4] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, K.
Pister, R. Struik, J. P. Vasseur, and R. Alexander, “RPL:
IPv6 Routing Protocol for Low-Power and Lossy
Networks,” 2012. [Online]. Available:
tools.ietf.org/html/rfc6550.

[5] H. L. Bodlaender and A. M. C. A. Koster, “Combinatorial
Optimization on Graphs of Bounded Treewidth,”
Comput. J., vol. 51, no. 3, pp. 255–269, 2008.

[6] O. Gaddour and A. KoubíA, “Survey RPL in a Nutshell:
A Survey,” Comput. Netw., vol. 56, no. 14, pp. 3163–
3178, 2012.

[7] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: Real-time
intrusion detection in the Internet of Things,” Ad Hoc

Networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[8] H. Moser, “Exact Algorithms for Generalizations of
Vertex Cover,” , M.S. thesis, Dept. Mathematics and
Informatics, Friedrich-Schiller Univ., Jena, Germany,
2005.

[9]

J. Alber, H. L. Bodlaender, H. Fernau, and R.
Niedermeier, “Algorithm Theory - SWAT 2000: 7th
Scandinavian Workshop on Algorithm Theory Bergen,
Norway, July 5-7, 2000 Proceedings,” Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 97–
110.

[10] N. Robertson and P. D. Seymour, “Graph minors. II.
Algorithmic aspects of tree-width,” J. Algorithms, vol. 7,
no. 3, pp. 309–322, 1986

[11] S. P. Carroll, “Domain Specific Language for Dynamic
Programming on Nice-tree Decompositions,” M.S. thesis,
Dept. Eng., Ohio Univ., 2013.

[12] K. D. Korte, A. Sehgal, and J. Schönwälder, “Dependable
Networks and Services: 6th IFIP WG 6.6 International
Conference on Autonomous Infrastructure, Management,
and Security, AIMS 2012, Luxembourg, Luxembourg,
June 4-8, 2012. Proceedings,” R. Sadre, J. Novotný, P.
Čeleda, M. Waldburger, and B. Stiller, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 50–61.

[13] I. Dinur and S. Safra, “On the hardness of approximating
minimum vertex cover,” Ann. Math., vol. 162, pp. 439–
485, 2005.

