Chemical Quality Control

Lab 1 Assay of Zinc sulfate content in Octozinc[®] capsules

Principle:

According to United States Pharmacopoeia (USP-30 2007):

Zinc sulphate is determined by complexometric titration using:

- EDTA(ethylene diamine tetra acetic acid disodium salt) as titrant.
- **EBT(eriochrome black T)** as indicator.
- Ammonia buffer as buffer.

N.B: Ca²⁺ & Mg²⁺ can be determined by the same principle

• EDTA is prepared as Molar solution : As It reacts in ratio 1:1 with metals

• **EBT** is a metallochromic indicator has 2 different colors in complex form with zinc (purple) and in free form (full blue).

Alkaline buffer is used in complexometric titrations .. Why

1. Shift reaction between EDTA and metal forward, to prevent the reversibility of the reaction.

$$H_2Y^{2-} + M^{n+} (MY)^{n-4} + 2H^+$$

 $H_2Y^{2-} + Zn^{2+} (ZnY)^{2-} + 2H^+$

 Make color change at end point due to change in metal concn. Not due to pH as most metal indicators are also acid base indicators

Precautions during complexometric titration

For sharp end point : VIGEROUS SHAKING with Rapid titration

✓ Indicator can be increased any time during titration

Once end point is reached (free form of indicator), color do NOT change with addition of excess titrant.

Procedure :

1- Transfer the contents of two capsules quantitatively into 100-mL measuring flask

> 2- Add 50 mL water, shake well for 5 min. for complete extraction, complete to the mark with water, mix and then filter

4- Take 10 mL of the filtrate in conical flask + 2 mL NH₃ buffer + few specks of EBT (purple), and titrate with 0.01 M EDTA till full blue color

3- Discard first 5 mL of the filtrate.

Method Validation is performed to ensure that an analytical method is accurate, specific, reproducible & rugged over a specified range.

For official method partial validation is required (accuracy, precision and specificity) e.g. Zn SO₄. For non-official method total validation is required (all validation parameters)

✓ <u>Accuracy:</u>

 It the measure of <u>exactness</u> of an analytical method or the <u>closeness</u> of agreement between the measured value and the value that is accepted either as a conventional, <u>true value</u> or an accepted reference value.

• Expressed as mean Recovery% or Recovery %.

✓ <u>Precision</u>:

 It is the measure of the degree of <u>repeatability</u> of analytical method.

Expressed as

relative standard deviation or standard deviation.

Low accuracy High precision

High accuracy Low precision

High accuracy High precision

Calculation:

Each 1mL of 0.01 M EDTA equivalent to 0.002874 gm = 2.874 mg ZnSO₄ - F

Found Amount Of ZnSO₄ (in 2 capsules) =
$$\frac{mLs \times f \times F \times 100}{10}$$
 = mg/2cap

Claimed amount of zinc sulfate in two capsules is 220 mg

ACCURACY:

Expressed as mean recovery %

Expressed as relative standard deviation or standard deviation.

$$RSD = \frac{SD}{Mean \ recovery} *100$$

mls of titration	Amount found	R % (_X)	Deviation $ _{\chi} - \chi' $
		100	0
		9 9	1
		101	1
		95	5
x'			_
SD			

rejection rule !!!

If any recovery has its D > 4 D' it must be rejected out of calculation

4D' = 2.66, therefore <u>5</u> bigger than 4D' Therefore rejected

<u>STEPS</u>:

- 1. Calculate mean recovery (X`) ignoring the suspected one.
- 2. Calculate |X –X`| for each one.
- 3. Calculate average deviation (D`) with ignoring deviation of suspected recovery.

If any recovery has **its D** > **4 D'** it must be rejected out of calculation

